Abstract

Gallium Phosphide (GaP) has a band gap of 2.26 eV and a valance band edge that is more negative than the water oxidation level. Hence, it may be a promising material for photoelectrochemical water splitting. However, one thing GaP has in common with other III-V semiconductors is that it corrodes in photoelectrochemical reactions. Cobalt oxide (CoOx) is a chemically stable and highly active oxygen evolution reaction co-catalyst. In this study, we protected a GaP photoanode by using a 20 nm TiO2 as a protection layer and a 2 nm cobalt oxide co-catalyst layer, which were both deposited via atomic layer deposition (ALD). A GaP photoanode that was modified by CoOx exhibited much higher photocurrent, potential, and photon-to-current efficiency than a bare GaP photoanode under AM1.5G illumination. A photoanode that was coated with both TiO2 and CoOx layers was stable for over 24 h during constant reaction in 1 M NaOH (pH 13.7) solution under one sun illumination.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer

Haseong Kim, Hyojung Bae, Seung Wan Bang, Seyoung Kim, Sang Hyun Lee, Sang-Wan Ryu, and Jun-Seok Ha
Opt. Express 27(4) A206-A215 (2019)

Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

Rowena Yew, Siva Krishna Karuturi, Jiaqin Liu, Hark Hoe Tan, Yucheng Wu, and Chennupati Jagadish
Opt. Express 27(2) 761-773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  2. D. K. Lee and K.-S. Choi, “Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition,” Nat. Energy 3(1), 53–60 (2018).
    [Crossref]
  3. K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc. 133(34), 13272–13275 (2011).
    [Crossref] [PubMed]
  4. D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
    [Crossref] [PubMed]
  5. S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
    [Crossref] [PubMed]
  6. J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
    [Crossref] [PubMed]
  7. J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
    [Crossref]
  8. F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
    [Crossref]
  9. M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
    [Crossref]
  10. A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
    [Crossref] [PubMed]
  11. J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
    [Crossref]
  12. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  13. S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
    [Crossref] [PubMed]
  14. C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
    [Crossref] [PubMed]
  15. D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
    [Crossref] [PubMed]
  16. J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
    [Crossref] [PubMed]
  17. M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
    [Crossref]
  18. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
    [Crossref] [PubMed]
  19. M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
    [Crossref]
  20. R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
    [Crossref] [PubMed]
  21. J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
    [Crossref] [PubMed]
  22. Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
    [Crossref]
  23. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
    [Crossref]
  24. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
    [Crossref]
  25. L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
    [Crossref] [PubMed]
  26. M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
    [Crossref] [PubMed]
  27. D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
    [Crossref] [PubMed]
  28. E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
    [Crossref]

2018 (3)

D. K. Lee and K.-S. Choi, “Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition,” Nat. Energy 3(1), 53–60 (2018).
[Crossref]

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

2017 (5)

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

2016 (4)

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

2015 (2)

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

2014 (5)

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

2013 (1)

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

2012 (1)

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

2011 (3)

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc. 133(34), 13272–13275 (2011).
[Crossref] [PubMed]

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

2010 (2)

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

2009 (1)

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Aagesen, M.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Ager, J. W.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Aguiar, J. A.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Alhassan, A.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Al-Jassim, M.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Alqahtani, M.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Anzenberg, E.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Assali, S.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Bae, D.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

Bakkers, E. P.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Beanland, R.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Beardslee, J. A.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Beeman, J.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Beiler, A. M.

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

BenJaber, S.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Bielinski, A. R.

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

Biesinger, M. C.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Blackman, C.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Blackman, C. S.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Boettcher, S. W.

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Bonn, M.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Brunschwig, B. S.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Burke, M. S.

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

Canovas, E.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Carmalt, C. J.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Chen, C.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Chen, S.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Chen, Y. W.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Chidsey, C. E.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Choi, K.-S.

D. K. Lee and K.-S. Choi, “Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition,” Nat. Energy 3(1), 53–60 (2018).
[Crossref]

Chorkendorff, I.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

Covington, J. A.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Cui, F.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Cui, Y.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Dasgupta, N. P.

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

Deutsch, T. G.

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

Di Maggio, F.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Domen, K.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Dühnen, S.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Dzara, M. J.

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

Fahrenkrug, E.

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

Ferrere, S.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Flanagan, S.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Frei, H.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Gamelin, D. R.

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

Gao, L.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Gao, Z.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Ge, H.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Gerson, A. R.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Gray, H. B.

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Grimm, R. L.

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

Grosvenor, A. P.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

Gu, J.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Gunji, M.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Handler, S. G.

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Hansen, O.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

Hatch, S.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Haverkort, J. E.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Hettick, M.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hu, Q. M.

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Hu, S.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Inumaru, H.

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

Iwashina, K.

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc. 133(34), 13272–13275 (2011).
[Crossref] [PubMed]

Jacob, S. I.

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

Javey, A.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Kast, M. G.

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

Khusnutdinova, D.

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

Kubota, J.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Kudo, A.

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc. 133(34), 13272–13275 (2011).
[Crossref] [PubMed]

Lau, L. W. M.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Le Bahers, T.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Lee, D. K.

D. K. Lee and K.-S. Choi, “Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition,” Nat. Energy 3(1), 53–60 (2018).
[Crossref]

Lee, S.

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

Lewis, N. S.

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Li, Y.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Li, Y. Q.

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Lichterman, M.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Lichterman, M. F.

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Lin, Y.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Liu, C.

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

Liu, H.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Liu, Y. Q.

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Maldonado, S.

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

Malizia, M.

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

McIntyre, P. C.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

McKone, J. R.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mics, Z.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Moore, G. F.

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

Nakamura, S.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Neale, N. R.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Nielander, A. C.

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

Notten, P. H.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Nurlaela, E.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Ould-Chikh, S.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Park, Y.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Parkin, I. P.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Payne, B. P.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

Prange, J. D.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Qin, Y.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Qureshi, M.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Ranney, J. K.

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

Sanchez, A.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Santori, E. A.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Sathasivam, S.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Sautet, P.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Schwartzberg, A.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Seeds, A.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Seger, B.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

Shaner, M. R.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Sharp, I. D.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Shinagawa, T.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Simion, C. E.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Smart, R. S.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

Smart, R. S. C.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Smith, A. M.

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

Spurgeon, J. M.

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Standing, A.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Stanoiu, A.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Steirer, K. X.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

Sun, J.

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

Takanabe, K.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Tang, J.

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

Tang, M.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Toma, F. M.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Tong, X.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Trotochaud, L.

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

Turner, J. A.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

van Dam, D.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Verheijen, M. A.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Vesborg, P. C.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

Vesborg, P. C. K.

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

Wadsworth, B. L.

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

Walczak, K.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Walter, M. G.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wang, H.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Wang, M.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Ward, T.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Warren, E. L.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wilson, R. L.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Wu, J.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Xiao, C.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Yan, Y.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

Yang, F.

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

Yang, J.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Yang, P.

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

Yano, J.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Young, J. L.

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

Young, S. L.

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

Yu, Z.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Yuan, G.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Zhang, B.

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

Zhang, J.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Zhang, J. K.

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Zhang, Y.

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

Zhao, S.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Zhao, S. C.

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Zheng, Z.

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Zhong, D. K.

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Lee, A. R. Bielinski, E. Fahrenkrug, N. P. Dasgupta, and S. Maldonado, “Macroporous p-GaP photocathodes prepared by anodic etching and atomic layer deposition doping,” ACS Appl. Mater. Interfaces 8(25), 16178–16185 (2016).
[Crossref] [PubMed]

ACS Applied Energy Materials (1)

M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber, C. Blackman, B. Zhang, Y. Qin, I. P. Parkin, S. Nakamura, H. Liu, and J. Wu, “InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation,” ACS Applied Energy Materials 1(11), 6417–6424 (2018).
[Crossref]

ACS Catal. (1)

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Canovas, M. Bonn, and K. Takanabe, “Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning,” ACS Catal. 6(7), 4117–4126 (2016).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, and Y. Qin, “Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production,” Angew. Chem. Int. Ed. Engl. 56(3), 816–820 (2017).
[Crossref] [PubMed]

Appl. Surf. Sci. (2)

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci. 257(7), 2717–2730 (2011).
[Crossref]

Catal. Sci. Technol. (1)

Y. Q. Li, S. C. Zhao, Q. M. Hu, Z. Gao, Y. Q. Liu, J. K. Zhang, and Y. Qin, “Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene,” Catal. Sci. Technol. 7(10), 2032–2038 (2017).
[Crossref]

Chem. Rev. (1)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore, “Metalloporphyrin-modified semiconductors for solar fuel production,” Chem. Sci. (Camb.) 8(1), 253–259 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (5)

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc. 133(34), 13272–13275 (2011).
[Crossref] [PubMed]

D. K. Zhong, J. Sun, H. Inumaru, and D. R. Gamelin, “Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes,” J. Am. Chem. Soc. 131(17), 6086–6087 (2009).
[Crossref] [PubMed]

L. Trotochaud, S. L. Young, J. K. Ranney, and S. W. Boettcher, “Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation,” J. Am. Chem. Soc. 136(18), 6744–6753 (2014).
[Crossref] [PubMed]

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, and S. W. Boettcher, “Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism,” J. Am. Chem. Soc. 137(10), 3638–3648 (2015).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (2)

J. L. Young, K. X. Steirer, M. J. Dzara, J. A. Turner, and T. G. Deutsch, “Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2831–2836 (2016).
[Crossref]

M. Malizia, B. Seger, I. Chorkendorff, and P. C. K. Vesborg, “Formation of a p–n heterojunction on GaP photocathodes for H2production providing an open-circuit voltage of 710 mV,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6847–6853 (2014).
[Crossref]

J. Phys. Chem. C (1)

F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, “Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene,” J. Phys. Chem. C 120(13), 6989–6995 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis, and J. M. Spurgeon, “Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition,” J. Phys. Chem. Lett. 4(23), 4188–4191 (2013).
[Crossref]

Nano Lett. (2)

J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, “Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates,” Nano Lett. 14(4), 2013–2018 (2014).
[Crossref] [PubMed]

C. Liu, J. Sun, J. Tang, and P. Yang, “Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett. 12(10), 5407–5411 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, and E. P. Bakkers, “Efficient water reduction with gallium phosphide nanowires,” Nat. Commun. 6(1), 7824 (2015).
[Crossref] [PubMed]

Nat. Energy (2)

J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, and J. A. Turner, “A graded catalytic–protective layer for an efficient and stable water-splitting photocathode,” Nat. Energy 2(2), 16192 (2017).
[Crossref]

D. K. Lee and K.-S. Choi, “Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition,” Nat. Energy 3(1), 53–60 (2018).
[Crossref]

Nat. Mater. (1)

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Science (1)

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO(2) coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu, F. Di Maggio, and J. A. Covington, “The effect of film thickness on the gas sensing properties of ultra-thin TiO(2) films deposited by atomic layer deposition,” Sensors (Basel) 18(3), 735 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of the GaP photoanode modified by amorphous TiO2 and cobalt oxide CoOx. 1(b) XPS spectra showing the Ti 2p and Co 2p spectra measured on the surface of the GaP/TiO2/CoOx photoanode pre-PEC analysis.
Fig. 2
Fig. 2 Atomic force microscopy images morphology for the photoanode surface. Figures 2(a) and 2(b) Surface morphology of GaP-TiO2/CoOx photoanode. 2(c) 3D surface morphology of GaP-TiO2/CoOx. The z-scale is 2 nm and 784.5 pm for the AFM images in 2(a) and 2(b) respectively.
Fig. 3
Fig. 3 Photoelectrochemical properties of GaP photoanodes. 3(a) The current-potential curves under AM 1.5G-simulated sunlight using three-electrode configuration in 1 M NaOH electrolyte (pH 13.7). 3(b) Applied bias photon-to-current efficiency (ABPE) for GaP photoanodes.
Fig. 4
Fig. 4 (a) Incident photon-to-current conversion efficiency (IPCE) of GaP/TiO2/CoOx photoanode in 1M NaOH electrolyte at 1 V versus Ag/AgCI. 4(b) Gas chromatography of the oxygen evolved from GaP/TiO2/CoOx photoanode. The photoanode was biased at zero V versus reference electrode Ag/AgCl under AM 1.5G-simulated sunlight in 1 M NaOH solution.
Fig. 5
Fig. 5 Stability and Chemical properties of GaP/TiO2/CoOx photoanodes. 5(a) Steady-state photocurrent of the GaP photoanode held at zero V versus reference electrode (Ag/AgCl) under simulated one sunlight. 5(b) XPS spectra showing the Ti 2p (b) and Co 2p. 5(c) transitions from the surface of the photoanode after the reliability test for 24 hours.

Metrics