Abstract

The optimal exploitation of the oceanic information provided by recent high spatial resolution sensors such as Landsat 8-OLI is strongly conditioned by the quality of the water reflectance signal retrieval. One main issue stands in the ability to correct water pixels for the contamination of the sun glint, which might induce a seasonal or permanent loss of data according to the latitude. The SWIR information now provided for the most recent high spatial resolution sensors was used for evaluating the sun glint level and correcting the radiative signal for its effect. This has been performed transposing historical empirical formalisms based on the NIR signal. An automated SWIR-based sun glint correction procedure was then developed using a 4-year OLI archive gathered over very turbid waters of French Guiana (227 scenes). This procedure allows the practical limitations associated with past similar empirical methods (sensitivity to water turbidity and manual image per image correction) to be overcome. While a satisfactory preservation of the information over sun glint free pixels was observed, comparison exercises based on in situ Rrs data gathered in sun glint affected areas emphasize the relevance of the proposed methodology (correction by a factor of 14 of the averaged bias in the Rrs values after removing sun glint effects). Current limitations in the applicability of this SWIR-based empirical automated method are mainly associated with the presence of high cloud coverage, thin clouds in the OLI scene or highly spatially variable marine or atmospheric signal (around 47%, 42% and 11%, respectively, of the total of 12% of failure over French Guiana OLI archive). The potential large applicability of the procedure developed in this work was eventually demonstrated over contrasted coastal environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A simple and effective method for monitoring floating green macroalgae blooms: a case study in the Yellow Sea

Hailong Zhang, Zhongfeng Qiu, Emmanuel Devred, Deyong Sun, Shengqiang Wang, Yijun He, and Yue Yu
Opt. Express 27(4) 4528-4548 (2019)

Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters

Nima Pahlevan, Jean-Claude Roger, and Ziauddin Ahmad
Opt. Express 25(6) 6015-6035 (2017)

Cloud masking of SeaWiFS images over coastal waters using spectral variability

Karin Nordkvist, Hubert Loisel, and Lucile Duforêt Gaurier
Opt. Express 17(15) 12246-12258 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
    [Crossref]
  2. Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
    [Crossref]
  3. B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
    [Crossref]
  4. Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
    [Crossref]
  5. B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
    [Crossref]
  6. E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
    [Crossref]
  7. E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
    [Crossref] [PubMed]
  8. T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
    [Crossref]
  9. N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
    [Crossref]
  10. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
    [Crossref]
  11. T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
    [Crossref]
  12. P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
    [Crossref]
  13. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [Crossref] [PubMed]
  14. L. Bourg, F. Montagner, V. Billat, and S. Belanger, “Sun glint flag algorithm,” MERIS ATBD 2.13, version 4.3 (7 July 2011). https://earth.esa.int/instruments/meris/atbd/
  15. C. S. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Bull. Scripps Inst. Oceanogr. 6, 401–488 (1956).
  16. R. Doerffer, ATBD 2.255. “Alternative Atmospheric Correction Procedure for Case 2 Water Remote Sensing using MERIS”, Algorithm Theoretical Basis Document (ATBD) Version 1.0, Helmholtz-Zentrum Geesthacht, Geesthacht, 2011.2168.
  17. F. Steinmetz, P.-Y. Deschamps, and D. Ramon, “Atmospheric correction in presence of sun glint: application to MERIS,” Opt. Express 19(10), 9783–9800 (2011).
    [Crossref] [PubMed]
  18. E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
    [Crossref]
  19. J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
    [Crossref]
  20. D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
    [Crossref]
  21. J. A. Goodman, Z. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47(28), F1–F11 (2008).
    [Crossref] [PubMed]
  22. K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [Crossref]
  23. K. E. A. Joyce, “Method for mapping live coral cover using remote sensing”. Ph.D. thesis, University of Queensland: Brisbane, Australia (2004).
  24. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).
  25. V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).
  26. V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
    [Crossref]
  27. C. D. Mobley, Light and water: radiative transfer in natural waters (Academic Press, 1994).
  28. J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
    [Crossref]
  29. T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
    [Crossref]
  30. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
    [Crossref]
  31. E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
    [Crossref]
  32. P. Legendre and L. Legendre, “Numerical Ecology, Volume 24,” Developments Environ. Model. 24, 870 (1988).
  33. G. Doxani, M. Papadopoulou, P. Lafazani, M. Tsakiri-Strati, and E. Mavridou, “Sun glint correction of very high spatial resolution images,” Thales, Honor Prof. Emeritus Michael E. Contadakis 329–340 (2013).
  34. J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
    [Crossref]
  35. D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).
  36. C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1–5 (2011).
    [Crossref]
  37. P. M. M. Groetsch, P. Gege, S. G. H. Simis, M. A. Eleveld, and S. W. M. Peters, “Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements,” Opt. Express 25(16), A742–A761 (2017).
    [Crossref] [PubMed]
  38. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
    [Crossref]
  39. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
  40. E. F. Vermote and S. Kotchenova, “Atmospheric correction for the monitoring of land surfaces,” J. Geophys. Res. Atmos. 113(D23), 1–12 (2008).
    [Crossref]
  41. J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
    [Crossref]

2018 (1)

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

2017 (3)

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

P. M. M. Groetsch, P. Gege, S. G. H. Simis, M. A. Eleveld, and S. W. M. Peters, “Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements,” Opt. Express 25(16), A742–A761 (2017).
[Crossref] [PubMed]

2016 (3)

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
[Crossref] [PubMed]

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

2015 (6)

P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

2014 (2)

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

2012 (2)

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

2011 (3)

F. Steinmetz, P.-Y. Deschamps, and D. Ramon, “Atmospheric correction in presence of sun glint: application to MERIS,” Opt. Express 19(10), 9783–9800 (2011).
[Crossref] [PubMed]

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1–5 (2011).
[Crossref]

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

2009 (4)

T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

2008 (2)

2006 (2)

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

2005 (1)

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
[Crossref]

2004 (1)

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

2001 (1)

1999 (1)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

1988 (1)

P. Legendre and L. Legendre, “Numerical Ecology, Volume 24,” Developments Environ. Model. 24, 870 (1988).

1956 (1)

C. S. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Bull. Scripps Inst. Oceanogr. 6, 401–488 (1956).

Aita, M. N.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Akshaya, B. J.

P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
[Crossref]

Andréfouët, S.

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

Apprill, A.

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

Artigas, L. F.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Atkinson, M. J.

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

Bailey, S.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Bailey, S. W.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

Barsi, J. A.

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

Bryère, P.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Caillaud, J.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Carder, K. L.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Chami, M.

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

Cox, C. S.

C. S. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Bull. Scripps Inst. Oceanogr. 6, 401–488 (1956).

Danis, P. A.

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Deschamps, P.-Y.

Dessailly, D.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

Dinh Ngoc, D.

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Doan Minh, C.

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Dogliotti, A. I.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Doxaran, D.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Duforêt-Gaurier, L.

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Eleveld, M. A.

Eugenio, F.

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

Franz, B. A.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

Gardel, A.

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Gege, P.

Gensac, E.

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

Goodman, J. A.

Greb, S.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Groetsch, P. M. M.

Han, B.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Harada, N.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Harborne, A. R.

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
[Crossref]

Harmel, T.

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

He, Y.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Hedley, J. D.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
[Crossref]

Hegde, A. V.

P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
[Crossref]

Hochberg, E. J.

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

Hu, C.

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1–5 (2011).
[Crossref]

Ishida, A.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Jagalingam, P.

P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
[Crossref]

Jamet, C.

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Jones, D. K.

E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
[Crossref] [PubMed]

Ju, J.

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

Kay, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Kishi, M. J.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Knaeps, E.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Kotchenova, S.

E. F. Vermote and S. Kotchenova, “Atmospheric correction for the monitoring of land surfaces,” J. Geophys. Res. Atmos. 113(D23), 1–12 (2008).
[Crossref]

Kovalskyy, V.

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

Kuring, N.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

Kutser, T.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Kvaran, G.

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

Lavender, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Lee, K.

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

Lee, Z.

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

Legendre, L.

P. Legendre and L. Legendre, “Numerical Ecology, Volume 24,” Developments Environ. Model. 24, 870 (1988).

Legendre, P.

P. Legendre and L. Legendre, “Numerical Ecology, Volume 24,” Developments Environ. Model. 24, 870 (1988).

Lesourd, S.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Loisel, H.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Lubac, B.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Lyzenga, D. R.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
[Crossref]

Malinas, N. P.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
[Crossref]

Mangin, A.

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Marcello, J.

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Markham, B.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Markham, B. L.

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

Martin, J.

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

Masek, J.

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

McClain, C. R.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Medina, A.

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

Meriaux, X.

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

Mériaux, X.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Moore, G.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Mumby, P. J.

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
[Crossref]

Munk, W.

C. S. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Bull. Scripps Inst. Oceanogr. 6, 401–488 (1956).

Nechad, B.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Neukermans, G.

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Ondrusek, M.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Onodera, J.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Ouillon, S.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Paavel, B.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Pahlevan, N.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Park, Y.

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Pedelty, J. A.

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

Pellerin, B. A.

E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
[Crossref] [PubMed]

Perrie, W.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Peters, S. W. M.

Poteau, A.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

Praks, J.

T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Qiu, Z.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Ramon, D.

Raymaekers, D.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Reynaud, N.

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

Roy, D. P.

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

Ruddick, K.

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

Ruddick, K. G.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Schaaf, C. B.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Schott, J. R.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Shen, H.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Shi, W.

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[Crossref]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Simis, S. G. H.

Slonecker, E. T.

E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
[Crossref] [PubMed]

Steinmetz, F.

Sterckx, S.

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Strait, C. M.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Sun, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Tanis, F. J.

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
[Crossref]

Tormos, T.

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

Tranvik, L. J.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Ustin, S. L.

Vahtmäe, E.

T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Vanhellemont, Q.

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

Vantrepotte, V.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Vermote, E.

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

Vermote, E. F.

E. F. Vermote and S. Kotchenova, “Atmospheric correction for the monitoring of land surfaces,” J. Geophys. Res. Atmos. 113(D23), 1–12 (2008).
[Crossref]

Verpoorter, C.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Wang, M.

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[Crossref]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

Wang, S.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Watanabe, E.

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Werdell, P. J.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

Xiao, C.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Xing, Q.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Yang, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Zhu, J.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Zibordi, G.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

Appl. Opt. (2)

Biogeosciences (1)

E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi, “Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland,” Biogeosciences 12(20), 6147–6168 (2015).
[Crossref]

Bull. Scripps Inst. Oceanogr. (1)

C. S. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Bull. Scripps Inst. Oceanogr. 6, 401–488 (1956).

Coral Reefs (1)

E. J. Hochberg, M. J. Atkinson, A. Apprill, and S. Andréfouët, “Spectral reflectance of coral,” Coral Reefs 23, 84–95 (2004).
[Crossref]

Developments Environ. Model. (1)

P. Legendre and L. Legendre, “Numerical Ecology, Volume 24,” Developments Environ. Model. 24, 870 (1988).

Geophys. Res. Lett. (1)

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1–5 (2011).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry using a simple physically based algorithm,” IEEE Trans. Geosci. Remote Sens. 44(8), 2251–2259 (2006).
[Crossref]

Int. J. Remote Sens. (1)

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: simple and robust removal of sun glint for mapping shallow‐water benthos,” Int. J. Remote Sens. 26(10), 2107–2112 (2005).
[Crossref]

J. Appl. Remote Sens. (1)

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
[Crossref]

J. Coast. Res. SI (2)

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. SI 56, 1532–1536 (2009).

V. Vantrepotte, H. Loisel, X. Meriaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters,” J. Coast. Res. SI 64, 1750–1754 (2011).

J. Geophys. Res. (2)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorighms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).

J. Geophys. Res. Atmos. (1)

E. F. Vermote and S. Kotchenova, “Atmospheric correction for the monitoring of land surfaces,” J. Geophys. Res. Atmos. 113(D23), 1–12 (2008).
[Crossref]

J. Geophys. Res. Oceans (1)

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Limnol. Oceanogr. (1)

K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Mar. Pollut. Bull. (1)

E. T. Slonecker, D. K. Jones, and B. A. Pellerin, “The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM),” Mar. Pollut. Bull. 107(2), 518–527 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Procedia Eng. (1)

P. Jagalingam, B. J. Akshaya, and A. V. Hegde, “Bathymetry mapping using landsat 8 satellite imagery,” Procedia Eng. 116, 560–566 (2015).
[Crossref]

Remote Sens. (4)

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The spectral response of the Landsat-8 operational land imager,” Remote Sens. 6(10), 10232–10251 (2014).
[Crossref]

J. Martin, F. Eugenio, J. Marcello, and A. Medina, “Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters,” Remote Sens. 8(1), 1–16 (2016).
[Crossref]

Remote Sens. Environ. (10)

J. Ju, D. P. Roy, E. Vermote, J. Masek, and V. Kovalskyy, “Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods,” Remote Sens. Environ. 122, 175–184 (2012).
[Crossref]

T. Kutser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[Crossref]

E. Knaeps, K. G. Ruddick, D. Doxaran, A. I. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
[Crossref]

T. Harmel, M. Chami, T. Tormos, N. Reynaud, and P. A. Danis, “Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,” Remote Sens. Environ. 204, 308–321 (2018).
[Crossref]

Other (6)

R. Doerffer, ATBD 2.255. “Alternative Atmospheric Correction Procedure for Case 2 Water Remote Sensing using MERIS”, Algorithm Theoretical Basis Document (ATBD) Version 1.0, Helmholtz-Zentrum Geesthacht, Geesthacht, 2011.2168.

L. Bourg, F. Montagner, V. Billat, and S. Belanger, “Sun glint flag algorithm,” MERIS ATBD 2.13, version 4.3 (7 July 2011). https://earth.esa.int/instruments/meris/atbd/

C. D. Mobley, Light and water: radiative transfer in natural waters (Academic Press, 1994).

K. E. A. Joyce, “Method for mapping live coral cover using remote sensing”. Ph.D. thesis, University of Queensland: Brisbane, Australia (2004).

G. Doxani, M. Papadopoulou, P. Lafazani, M. Tsakiri-Strati, and E. Mavridou, “Sun glint correction of very high spatial resolution images,” Thales, Honor Prof. Emeritus Michael E. Contadakis 329–340 (2013).

D. Dinh Ngoc, H. Loisel, C. Jamet, V. Vantrepotte, L. Duforêt-Gaurier, C. Doan Minh, and A. Mangin “Coastal and inland water pixels extraction algorithm (WiPE) from high spatial resolution optical sensors OLI on Landsat 8 and MSI on Sentinel-2” (in review).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Landsat-8 OLI true color images illustrating the coverage over the coastal waters of French Guiana (4 OLI scenes).
Fig. 2
Fig. 2 Number of valid pixels gathered from the OLI archive over the coastal waters of French Guiana. Rrs values have been processes using ACOLITE pixel per pixel SWIR processing from April 2013 to April 2017 (265 scenes).
Fig. 3
Fig. 3 Performance of the three SWIR based methods of this study over the scene LC82270562015258LGN00 (15 September 2015). Transect (a) used (true color image) to estimate the linear relationship (b) between the band SWIR 2 and the other OLI bands B1 (443 nm), B5 (655 nm) and B6 (1609 nm) and to illustrate the sun glint correction provided by the Hedley-SWIR and Joyce-SWIR. (c to e) Performance of the latter two different correction methods over RTOA values at 443, 655 and 865 nm, respectively. (f to h) Relative difference (in %) between RTOA values before and after the sun glint correction at 443, 655 and 865 nm, respectively. Note that the results for the Lyzenga-SWIR approach are coincident with those provided by Joyce –SWIR and are thus here omitted.
Fig. 4
Fig. 4 Illustration of the sensitivity of the method to the offset value definition for two OLI scenes LC82270562016261LGN00 (17 September 2016) (a) and LC82260572014072 (13 March 2017) (b). Panels (c) and (d) show the two kind of distributions of SWIR2 in the non glinted area, while the relative errors (e and f) in the RTOA restitution related to the use of the three different offsets: mean, mode and averaged minimum (lower than 10%) are illustrated in panels e and f for the pixels identified by a red star in the panel a and b, respectively.
Fig. 5
Fig. 5 Synthetic flowchart describing the different steps corresponding to the SWIR2 based automated empirical correction procedure proposed in the frame of this study.
Fig. 6
Fig. 6 Illustration of the impact of the sun glint correction process on the SWIR signal (LC82270562015338 scene – 4 December 2015) along a transect (a) in French Guiana water. Panels (b) and (c) show the distribution of the SWIR 2 and of the ratio SWIR 1 and SWIR 2 before and after correction, respectively.
Fig. 7
Fig. 7 Illustration over two coastal contrasted OLI scenes (coastline orientation, glint free water masses distribution) over French Guiana of the performance of the SWIR-based sun glint empirical automated procedure. RTOA values before (a) and after correction (b) and Rrs values before (c) and after correction (d) at 483 nm for the scene LC82260572014264 (21 September 2014). RTOA values before (e) and after correction (f) and Rrs values before (g) and after correction (h) at 655 nm for the scene LC82270562015242 (30 August 2015).
Fig. 8
Fig. 8 Illustration of the Rrs preservation after the correction of the sun glint effect using average values over French Guiana coastal sun glint free areas for the 227 OLI scenes considered in the frame of this study. The solid and dashed black lines represent the 1:1 and the ± 20% error lines, respectively. The same representation is provided in panel f) for the Rrs(443)/Rrs(565) ratio.
Fig. 9
Fig. 9 OLI scenes over French Guiana coastal waters illustrating the failure in the sun glint correction procedure. True color image (a) and Rrs(655) (b) values after sun glint correction obtained in the case of failure due to the presence of thin clouds (LC82270562015274, 1 October 2015). True color image (c) and Rrs (443) values (d) after correction illustrating highly heterogeneous marine patterns related issues (LC82260572013261, 19 September 2013)
Fig. 10
Fig. 10 Validation of the sun glint correction method through match-up data gathered in sun glint affected coastal areas of French Guiana (a). The panel b) illustrates the percentage of sun glint present in the sampled stations, estimated using Eq. (9), while the comparison between in situ and OLI Rrs data (before and after correction) is provided for the OLI visible bands in panels c to f, making a distinction between the points with sun glint percentage in the SWIR2 lower or greater than 10%.
Fig. 11
Fig. 11 Illustration of the potential applicability of the automated procedure developed over French Guiana coastal waters over contrasted coastal sites in Mexico (a to d, LC08_L1TP_023047_20170713_20170726_01_T1) and in Vietnam (e to f, LC08_L1TP_124053_20170615_20170628_01_T1). Values of RTOA and Rrs for band 561nm before (a,c,,e,g)and after (b,d,f,h) sun glint correction. Land and cloud masks are represented in grey.

Tables (4)

Tables Icon

Table 1 Comparison of the coefficients of the SWIR based relationships considered in the Hedley-SWIR, Lyzenga-SWIR and Joyce-SWIR method used for correcting the French Guiana sample OLI image in Fig. 3 from the sun glint effects.

Tables Icon

Table 2 Slope values (mean, minimum, maximum, standard deviation and variation coefficient) computed from the whole data set gathered over French Guiana coastal waters (227 images) for each OLI band.

Tables Icon

Table 3 Statistics values illustrating the preservation of the TOA signal (DN) over sun glint free pixels after the correction the whole OLI data set gathered over French Guiana using the automated procedure defined in Fig. 5.

Tables Icon

Table 4 Statistics of the matchup comparison between in situ and OLI-ACOLITE Rrs data (before and after sun glint correction).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L TOA =MLDN+AL
R TOA = π L TOA d 2 F0cos θ 0
R TOAi ' = R TOAi b i ( R SWIR2 offse t SWIR2 )
RMSD= i=1 N ( y i x i ) 2 N
BIAS= 1 N i=1 N y i x i x i 100
MAE= 1 N i=1 N | x i y i |
MARE= 1 N i=1 N | x i y i | x i 100
R clear = R TOA 4 C1 R TOA 7 R TOA 1 C2 R TOA 7
Glint area=where( ( SWIR2 SWIR 2 min ¯ SWIR 2 min ¯ ).100 ) >15
No glint area=where( ( SWIR2 SWIR 2 min ¯ SWIR 2 min ¯ ). 100 ) < 5
R clear2 = R TOA i C3 R TOA 7

Metrics