Abstract

Laser diodes have been proposed as a good replacement for light-emitting diodes in high-luminance white light sources. However, laser diodes typically generate very sharp temperature gradients inside the colour-converting elements (CCE) used to produce white light. This poses a thermal management problem in transmissive configurations, where most of the thermal dissipation occurs at the edges of the CCE. The hot spot in the center of the CCE typically drives the efficiency of the system down due to thermal quenching. In this work, we propose a strategy to tackle this issue that is based purely on optical manipulation. By using a free-form lens, the radiation pattern of the laser diode exciting the CCE is tailored so that its power distribution is skewed towards the periphery of the CCE: the zone with the highest thermal dissipation. With this technique, the maximum temperature inside the CCE can be significantly lower than when uniformly illuminating the CCE. Additionally, by lowering the temperature inside the CCE, this technique excites the CCE with a higher radiant flux, allowing higher luminance to be extracted from the system. These results were obtained with a realistic opto-thermal simulation framework and were then experimentally verified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holistic opto-thermal simulation framework for high-brightness light sources based on fluorescent conversion

António Correia, Peter Hanselaer, and Youri Meuret
Opt. Express 27(16) A1324-A1337 (2019)

High luminous flux from single crystal phosphor-converted laser-based white lighting system

Michael Cantore, Nathan Pfaff, Robert M. Farrell, James S. Speck, Shuji Nakamura, and Steven P. DenBaars
Opt. Express 24(2) A215-A221 (2016)

Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites

Shudong Yu, Yong Tang, Zongtao Li, Kaihang Chen, Xinrui Ding, and Binhai Yu
Photon. Res. 6(2) 90-98 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
    [Crossref]
  2. M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
    [Crossref]
  3. T. Farooq and K. Qian, “High luminance low etendue white light source using blue laser over static phosphor,” Proc. SPIE 9671, 96710C (2015).
  4. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
    [Crossref]
  5. C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).
  6. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
    [Crossref]
  7. J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
    [Crossref]
  8. A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
    [Crossref]
  9. Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
    [Crossref]
  10. E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).
  11. A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
    [Crossref]
  12. M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.
  13. N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
    [Crossref]
  14. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
    [Crossref]
  15. Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
    [Crossref]
  16. Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
    [Crossref]
  17. H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
    [Crossref] [PubMed]
  18. X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
    [Crossref]
  19. J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
    [Crossref]
  20. T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).
  21. COMSOL Multiphysics® v. 5.2a, “COMSOL AB, Stockholm, Sweden,” https://www.comsol.com .
  22. M. Duocastella and C. Arnold, “Bessel and annular beams for materials processing,” Laser & Photonics Rev. 6(5), 607–621 (2014).
    [Crossref]
  23. H. Ma, Z. Liu, P. Jiang, X. Xu, and S. Du, “Improvement of galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size,” Opt. Express 19(14), 13105–13117 (2011).
    [Crossref] [PubMed]
  24. F. Duerr and H. Thienpont, “Refractive laser beam shaping by means of a functional differential equation based design approach,” Opt. Express 22(7), 8001–8011 (2014).
    [Crossref] [PubMed]
  25. M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
    [Crossref]

2018 (4)

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

2017 (3)

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

2016 (3)

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
[Crossref]

2015 (3)

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

T. Farooq and K. Qian, “High luminance low etendue white light source using blue laser over static phosphor,” Proc. SPIE 9671, 96710C (2015).

2014 (4)

M. Duocastella and C. Arnold, “Bessel and annular beams for materials processing,” Laser & Photonics Rev. 6(5), 607–621 (2014).
[Crossref]

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
[Crossref]

F. Duerr and H. Thienpont, “Refractive laser beam shaping by means of a functional differential equation based design approach,” Opt. Express 22(7), 8001–8011 (2014).
[Crossref] [PubMed]

2013 (4)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

2011 (1)

Arnold, C.

M. Duocastella and C. Arnold, “Bessel and annular beams for materials processing,” Laser & Photonics Rev. 6(5), 607–621 (2014).
[Crossref]

Basu, C.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).

Bergman, T.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).

Bos, A. J. J.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Buffolo, M.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Cantore, M.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

Chatzizyrli, E.

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Chen, M.

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Cheng, T.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

Chu, J.

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Correia, A.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
[Crossref]

De Santi, C.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

DenBaars, S. P.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

DeWitt, D.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).

Dorenbos, P.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Du, S.

Duerr, F.

F. Duerr and H. Thienpont, “Refractive laser beam shaping by means of a functional differential equation based design approach,” Opt. Express 22(7), 8001–8011 (2014).
[Crossref] [PubMed]

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

Duocastella, M.

M. Duocastella and C. Arnold, “Bessel and annular beams for materials processing,” Laser & Photonics Rev. 6(5), 607–621 (2014).
[Crossref]

Dupont, D.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

Engle, M.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Farooq, T.

T. Farooq and K. Qian, “High luminance low etendue white light source using blue laser over static phosphor,” Proc. SPIE 9671, 96710C (2015).

Farrell, R. M.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

Frischeisen, J.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Guo, X.

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Hanselaer, P.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
[Crossref]

Hens, Z.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

Hu, R.

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Incropera, F.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).

Jiang, P.

Kelso, J.

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

Kracht, D.

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Lachmayer, R.

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Lan, W.

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

Lavine, A.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).

Lei, X.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Lenef, A.

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Li, H.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Li, M.

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

Liu, P.

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Liu, S.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Liu, Z.

Luo, X.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Ma, H.

Ma, Y.

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

Meijerink, A.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Meinhardt-Wollweber, M.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).

Meneghesso, G.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Meneghini, M.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Meuret, Y.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
[Crossref]

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

Mou, Y.

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Nakamura, S.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

Neumann, J.

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Peng, Y.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Pfaff, N.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

Pikart, P.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Qian, K.

T. Farooq and K. Qian, “High luminance low etendue white light source using blue laser over static phosphor,” Proc. SPIE 9671, 96710C (2015).

Rosenauer, M.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Roth, B.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).

Ryckaert, J.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

Sizov, D. S.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Speck, J. S.

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

Strauss, J.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Sun, R.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

Tanabe, S.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Tchoul, M.

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

Tessier, M. D.

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

Thienpont, H.

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

F. Duerr and H. Thienpont, “Refractive laser beam shaping by means of a functional differential equation based design approach,” Opt. Express 22(7), 8001–8011 (2014).
[Crossref] [PubMed]

Tinne, N.

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Trivellin, N.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Tsao, J. Y.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Ueda, J.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Vervaeke, M.

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

Wang, H.

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Wang, K.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Wang, X.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Wierer, J. J.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Xie, B.

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

Xu, X.

Yushchenko, M.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Zanoni, E.

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Zeng, X.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

Zheng, H.

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Zheng, Y.

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

Zhuo, Y.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

Zumkley, M.

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

Adv. Opt. Technol. (1)

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diodes,” Adv. Opt. Technol. 2(4), 313–321 (2013).

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
[Crossref]

IEEE Photonics J. (1)

A. Correia, P. Hanselaer, and Y. Meuret, “An efficient optothermal simulation framework for optimization of high-luminance white light sources,” IEEE Photonics J. 8(4), 1601215 (2016).
[Crossref]

IEEE Transactions on Electron Devices (1)

X. Lei, H. Zheng, X. Guo, J. Chu, S. Liu, and P. Liu, “Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure,” IEEE Transactions on Electron Devices 63(2), 691–697 (2016).
[Crossref]

Int. J. Heat and Mass Transf. (1)

Y. Ma, W. Lan, B. Xie, R. Hu, and X. Luo, “An optical-thermal model for laser-excited remote phosphor with thermal quenching,” Int. J. Heat and Mass Transf. 116, 694–702 (2018).
[Crossref]

J Eur. Ceram. Soc. (1)

Y. Peng, Y. Mou, H. Wang, Y. Zhuo, H. Li, M. Chen, and X. Luo, “Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting,” J Eur. Ceram. Soc. 38(16), 5525–5532 (2018).
[Crossref]

J. Alloy. Compd. (1)

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting,” J. Alloy. Compd. 768, 114–121 (2018).
[Crossref]

J. Phys. Chem. C (1)

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(7), 25003–25008 (2015).
[Crossref]

Laser & Photonics Rev. (1)

M. Duocastella and C. Arnold, “Bessel and annular beams for materials processing,” Laser & Photonics Rev. 6(5), 607–621 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Materials (1)

N. Trivellin, M. Yushchenko, M. Buffolo, C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, “Laser-based lighting: experimental analysis and perspectives,” Materials 10(10), 1166 (2017).
[Crossref]

Nanotechnology (1)

H. Zheng, X. Lei, T. Cheng, S. Liu, X. Zeng, and R. Sun, “Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers,” Nanotechnology 28(26), 265204 (2017).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Li, Y. Meuret, F. Duerr, M. Vervaeke, and H. Thienpont, “Comprehensive numerical design approach for refractive laser beam shapers to generate annular irradiance profiles,” Opt. Eng. 53, 085103 (2014).
[Crossref]

Opt. Express (4)

H. Ma, Z. Liu, P. Jiang, X. Xu, and S. Du, “Improvement of galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size,” Opt. Express 19(14), 13105–13117 (2011).
[Crossref] [PubMed]

F. Duerr and H. Thienpont, “Refractive laser beam shaping by means of a functional differential equation based design approach,” Opt. Express 22(7), 8001–8011 (2014).
[Crossref] [PubMed]

J. Ryckaert, A. Correia, M. D. Tessier, D. Dupont, Z. Hens, P. Hanselaer, and Y. Meuret, “Selecting the optimal synthesis parameters of InP/CdxZn1−xSe quantum dots for a hybrid remote phosphor white led for general lighting applications,” Opt. Express 25(24), 1009–1022 (2017).
[Crossref]

M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24(2), 215–221 (2015).
[Crossref]

Phys. Status Solidi (C) (1)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “The potential of III-nitride laser diodes for solid-state lighting,” Phys. Status Solidi (C) 11(3), 674–677 (2014).
[Crossref]

Proc. SPIE (3)

T. Farooq and K. Qian, “High luminance low etendue white light source using blue laser over static phosphor,” Proc. SPIE 9671, 96710C (2015).

A. Lenef, J. Kelso, Y. Zheng, and M. Tchoul, “Radiance limits of ceramic phosphors under high excitation fluxes,” Proc. SPIE 8841, 884107 (2013).
[Crossref]

E. Chatzizyrli, N. Tinne, R. Lachmayer, J. Neumann, and D. Kracht, “Opto-thermal simulation model for optimizing laser-excited remote phosphor systems,” Proc. SPIE 10693, 106930O (2018).

Prog. Energy Combust. Sci. (1)

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power led packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Other (3)

M. Engle, A. Lenef, P. Pikart, M. Rosenauer, M. Zumkley, J. Frischeisen, and J. Strauss, “Blue laser light conversion: a technology comparison between transmissive and reflective approaches,” in Proceedings of the 12th International Symposium on Automotive Lightning – ISAL 2017, T. Q. Khanh, ed. (Herbert Utz Verlag, 2017), pp. 19–28.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer(Wiley, 2011).

COMSOL Multiphysics® v. 5.2a, “COMSOL AB, Stockholm, Sweden,” https://www.comsol.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Depiction of a cross-section of the transmissive configuration that is considered in the opto-thermal simulations. Blue light is incident from the left towards a CCE that is thermally connected to a heat-sink at its periphery. A CPC is in optical contact with the outgoing surface of the CCE to improve light extraction.
Fig. 2
Fig. 2 Shaping function plot (left) for three shaping function orders. Irradiance distribution at the CCE’s excitation surface, in W / m 2, for (middle) n = 2 and (right) n = 6.
Fig. 3
Fig. 3 Images of (left) the designed beam shaping lens and (middle) the fabricated prototype. A picture (right) of the CCE sample in the aluminum plate.
Fig. 4
Fig. 4 Results for several shaping functions and optical excitation powers showing the (left) maximum temperature and (right) the mean temperature inside the CCE (in degree Celsius).
Fig. 5
Fig. 5 Cross-sections of the temperature at the front surface of the CCE for different shape functions when the system is excited with (left) 5 W and (right) 9 W.
Fig. 6
Fig. 6 Results of the simulations showing (left) the power efficiency Pf and (right) the relative luminance extracted compared to n = 0 at Pi = 1 W.
Fig. 7
Fig. 7 Thermal image captured after temperature stabilization for the experiment with the laser diode emitting 7 W (left) without using the free-form lens and (right) with the free-form lens. The CCE’s periphery is delineated in blue.
Fig. 8
Fig. 8 Comparison of the cross-sections of the thermal images captured for experiments with and without the beam shaping lens with the laser diode emitting (left) 3 W, (middle) 5 W and (right) 7 W.

Tables (1)

Tables Icon

Table 1 Optical power efficiency calculated from experimental measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( r ˜ ) = r ˜ n cos  ( r ˜ π 2 )

Metrics