Abstract

We demonstrate a low-loss coupling scheme between a silicon photonic waveguide and a hybrid-plasmonic waveguide. Measured coupling efficiencies reach up to 94% or −0.27 dB. The metal-insulator-semiconductor structure is fabrication-tolerant and adaptable to a wide range of materials including those used in CMOS processes. The coupler is a promising building block for low-loss active plasmonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrashort hybrid metal–insulator plasmonic directional coupler

Mahmoud Talafi Noghani and Mohammad Hashem Vadjed Samiei
Appl. Opt. 52(31) 7498-7503 (2013)

Hybrid plasmonic waveguide for low-loss lightwave guiding

Jin Tae Kim, Jung Jin Ju, Suntak Park, Min-su Kim, Seung Koo Park, and Sang-Yung Shin
Opt. Express 18(3) 2808-2813 (2010)

Low-loss hybrid plasmonic waveguide with double low-index nano-slots

Daoxin Dai and Sailing He
Opt. Express 18(17) 17958-17966 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  2. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  3. W. Ma and A. S. Helmy, “Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures,” J. Opt. Soc. Am. B 31(7), 1723–1729 (2014).
    [Crossref]
  4. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [Crossref] [PubMed]
  5. A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010).
    [Crossref]
  6. J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
    [Crossref]
  7. P. Shi, G. Zhou, and F. S. Chau, “Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides,” J. Opt. Soc. Am. B 30(6), 1426–1431 (2013).
    [Crossref]
  8. H. J. Lim and M. S. Kwon, “Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material,” IEEE Photonics J. 6(3), 1–9 (2014).
    [Crossref]
  9. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  10. X. Peng, R. Hao, Z. Ye, P. Qin, W. Chen, H. Chen, X. Jin, D. Yang, and E. Li, “Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect,” Opt. Lett. 42(9), 1736–1739 (2017).
    [Crossref] [PubMed]
  11. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett. 35(19), 3153–3155 (2010).
    [Crossref] [PubMed]
  12. L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
    [Crossref]
  13. A. Ahmadivand, “Hybrid photonic–plasmonic polarization beam splitter (HPPPBS) based on metal–silica–silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
    [Crossref]
  14. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide,” Opt. Lett. 40(7), 1603–1606 (2015).
    [Crossref] [PubMed]
  15. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
    [Crossref] [PubMed]
  16. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [Crossref] [PubMed]
  17. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  18. A. Messner, F. Eltes, P. Ma, S. Abel, B. Baeuerle, A. Josten, W. Heni, D. Caimi, J. Fompeyrine, and J. Leuthold, “Plasmonic ferroelectric modulators,” J. Light. Technol., 1–1 (2018).
  19. D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
    [Crossref] [PubMed]
  20. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  21. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  22. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
    [Crossref] [PubMed]

2018 (1)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

2017 (1)

2015 (4)

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide,” Opt. Lett. 40(7), 1603–1606 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

2014 (3)

H. J. Lim and M. S. Kwon, “Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

A. Ahmadivand, “Hybrid photonic–plasmonic polarization beam splitter (HPPPBS) based on metal–silica–silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[Crossref]

W. Ma and A. S. Helmy, “Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures,” J. Opt. Soc. Am. B 31(7), 1723–1729 (2014).
[Crossref]

2013 (2)

P. Shi, G. Zhou, and F. S. Chau, “Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides,” J. Opt. Soc. Am. B 30(6), 1426–1431 (2013).
[Crossref]

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

2012 (1)

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

2010 (4)

2009 (1)

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

1994 (1)

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, “Hybrid photonic–plasmonic polarization beam splitter (HPPPBS) based on metal–silica–silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[Crossref]

Ansell, D.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Baeuerle, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Boltasseva, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Chau, F. S.

Chelladurai, D.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Chen, H.

Chen, W.

Cheng, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Cui, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Dai, D.

Dalton, L. R.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Elder, D. L.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Fedoryshyn, Y.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Gao, L.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Grigorenko, A. N.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Haffner, C.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Han, Z.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref] [PubMed]

Hao, R.

He, S.

Helmy, A. S.

Heni, W.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hu, F.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

Huang, W.-P.

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jin, X.

Josten, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kinsey, N.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kwon, M. S.

H. J. Lim and M. S. Kwon, “Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Lanzillotti-Kimura Norberto, D.

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Leuthold, J.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Li, E.

Li, Q.

Lim, H. J.

H. J. Lim and M. S. Kwon, “Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Liu, K.

Lu, Q. S.

Ma, R.-M.

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

Ma, W.

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Peng, X.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Qin, P.

Qin, S. Q.

Qiu, M.

Radko, I. P.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Rodriguez, F. J.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Saha, S.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Shi, P.

Song, Y.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Sorger Volker, J.

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

Su, Y.

Tang, L.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

Van, V.

Wang, J.

Wang, X.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

Watanabe, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Wu, M.

Xu, W.

Yan, M.

Yang, D.

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Ye, Z.

Yuan, X. D.

Zhang, J. F.

Zhang, X.

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhou, G.

Zhou, Z.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

Zhu, Z. H.

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Appl. Phys. B (1)

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling,” Appl. Phys. B 113(2), 199–203 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE Photonics J. (1)

H. J. Lim and M. S. Kwon, “Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

J. Sorger Volker, D. Lanzillotti-Kimura Norberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17 (2012).
[Crossref]

Nat. Commun. (1)

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Nature (1)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Laser Technol. (1)

A. Ahmadivand, “Hybrid photonic–plasmonic polarization beam splitter (HPPPBS) based on metal–silica–silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[Crossref]

Opt. Lett. (3)

Other (2)

A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010).
[Crossref]

A. Messner, F. Eltes, P. Ma, S. Abel, B. Baeuerle, A. Josten, W. Heni, D. Caimi, J. Fompeyrine, and J. Leuthold, “Plasmonic ferroelectric modulators,” J. Light. Technol., 1–1 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cross-sectional schematic of the coupler showing the layer stacks of the photonic waveguide (left) and hybrid waveguide (right). (b) Symmetric supermode and (c) anti-symmetric supermode E y field profiles of the coupler. (d) Top-view intensity profile of the coupler showing mode beating between the two waveguides along the propagation. The profile is a composite of two y cross-sections: the midpoint of the silicon for the left half (photonic) and the midpoint of the spacer layer for the right half (hybrid-plasmonic). In each of (b), (c), and (d), the fields are normalized to the maximum electric field intensity (i.e. |E|2 = 1).
Fig. 2
Fig. 2 (a) Effective indices of the fundamental TM modes in the hybrid (solid green) and photonic (dashed green) waveguides as a function of the waveguide width. The grey dots mark the widths used for the measurements in Fig. 4. The propagation loss of the hybrid plasmonic mode is plotted in blue. (b) Dependence of the symmetric (solid green) and anti-symmetric (dashed green) supermode effective indices on the distance separating the two waveguides. The difference between the curves determines the coupling length (blue) as per Eq. (1). (c) Simulated spectral response of the coupler.
Fig. 3
Fig. 3 (a) Top-view schematic of the devices used to measure the efficiency of the hybrid couplers. (b) Colourized SEM image of the coupling region in a fabricated device showing the hybrid waveguide (left) and photonic waveguide (right).
Fig. 4
Fig. 4 (a) Hybrid plasmonic waveguide cutback measurements at the cross-port (green) and through port (blue) at a free-space wavelength λ = 1550 nm. The slope of the cross-port’s line of best fit gives the hybrid plasmonic propagation loss while the y-intercept gives the loss of two hybrid couplers. (b) Measured coupling efficiencies |κ|2 (green) and uncoupled powers |τ|2 (blue) for various designed gap widths. The solid lines are values calculated from simulations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P(z)=F sin 2 [ ( n symm n anti ) k 0 z 2 ]

Metrics