Abstract

Luminescent concentrators (LC) enable breaking the limit of geometrical concentration imposed by the brightness theorem. They enable increasing the brightness of Lambertian light sources such as (organic) light-emitting diodes. However, for illumination applications, light emitted in the high-index material needs to be outcoupled to free space, raising important light extraction issues. Supported by an intuitive graphical representation, we propose a simple design for light extraction: a wedged output side facet, breaking the symmetry of the traditional rectangular slab design. Angular emission patterns as well as ray-tracing simulations are reported on Ce:YAG single crystal concentrators cut with different wedge angles, and are compared with devices having flat or roughened exit facets. The wedge output provides a simple and versatile way to simultaneously enhance the extracted power (up to a factor of 2) and the light directivity (radiant intensity increased by up to 2.2.)

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-brightness source based on luminescent concentration

Dick K. G. de Boer, Dominique Bruls, and Henri Jagt
Opt. Express 24(14) A1069-A1074 (2016)

Solid-state source of intense yellow light based on a Ce:YAG luminescent concentrator

Juna Sathian, Jonathan D. Breeze, Benjamin Richards, Neil McN. Alford, and Mark Oxborrow
Opt. Express 25(12) 13714-13727 (2017)

Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering

Qin Zhang, Xiaobing Gu, Zihan Chen, Jie Jiang, Zhimin Zhang, Jufu Wei, Feng Li, Xiao Jin, Yinglin Song, and Qinghua Li
Opt. Express 25(15) 17683-17694 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bullough, “LEDs and automotive lighting applications,” Nitride Semicond. Light. Diodes, pp. 647–658, Jan. 2018.
  2. N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
    [Crossref]
  3. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
    [Crossref]
  4. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
    [Crossref]
  5. P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
    [Crossref]
  6. P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
    [Crossref]
  7. B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
    [Crossref] [PubMed]
  8. J. Chaves, Introduction to nonimaging optics. CRC Press, published July 26, 2017, ISBN 9781138747906.
  9. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18(18), 3090–3110 (1979).
    [Crossref] [PubMed]
  10. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
    [Crossref]
  11. W. G. J. H. M. van Sark, “Luminescent solar concentrators - A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
    [Crossref]
  12. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
    [Crossref]
  13. E. F. Schubert, Light-emitting diodes. Cambridge University, 2006.
  14. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [Crossref]
  15. X. Chen, B. Liu, Q. Wu, Z. Zhu, J. Zhu, M. Gu, H. Chen, J. Liu, L. Chen, and X. Ouyang, “Enhanced light extraction of plastic scintillator using large-area photonic crystal structures fabricated by hot embossing,” Opt. Express 26(9), 11438–11446 (2018).
    [Crossref] [PubMed]
  16. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
    [Crossref]
  17. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
    [Crossref]
  18. M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
    [Crossref]
  19. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
    [Crossref]
  20. D. K. G. de Boer, D. Bruls, and H. Jagt, “High-brightness source based on luminescent concentration,” Opt. Express 24(14), A1069–A1074 (2016).
    [Crossref] [PubMed]
  21. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “New scheme for pumping solid-state lasers based on LED-pumped luminescent concentrators,” in Optics InfoBase Conference Papers, 2014.
  22. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
    [Crossref] [PubMed]
  23. T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
    [Crossref]

2018 (2)

2017 (1)

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

2016 (3)

2015 (1)

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

2014 (1)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

2013 (2)

W. G. J. H. M. van Sark, “Luminescent solar concentrators - A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

2010 (2)

N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
[Crossref]

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

2009 (1)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

2008 (1)

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

2002 (1)

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

1999 (2)

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

1979 (1)

Anderson, K. S.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Balembois, F.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Barbet, A.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Batchelder, J. S.

Beverina, L.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Blain Christen, J.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Blanchot, J.-P.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Blengino, D.

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Bruls, D.

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Carter-Coman, C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chen, E. I.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chen, H.

Chen, L.

Chen, X.

Chénais, S.

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Cheng, T. C.

N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
[Crossref]

Chui, H. C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Cole, T.

Collins, D.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Craford, M. G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Danos, L.

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

de Boer, D. K. G.

Druon, F.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Forget, S.

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Forrest, S. R.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Gallinelli, T.

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Gardner, N. F.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Georges, P.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: A new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

Ghassemlooy, Z.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Grillot, P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Gu, M.

Haigh, P. A.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

Höfler, G. E.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Huang, J.-W.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Hueschen, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Jagt, H.

Jain, V. K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Jones, A. C.

Kaftanoglu, K.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Katchman, B. A.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Kesiraju, S.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Kish, F. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Kocot, C. P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Krames, M. R.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Krauss, T. F.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Lee, Y.-K.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Legavre, P.

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

Liu, B.

Liu, J.

Loh, B.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Markvart, T.

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

Mehta, D. S.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Möller, S.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Moudam, O.

O’Brien, B.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Obahiagbon, U.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Ochiai-Holcomb, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Ouyang, X.

Papakonstantinou, I.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

Parel, T. S.

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

Paul, A.

Pichon, P.

P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Light-emitting diodes: a new paradigm for Ti:sapphire pumping,” Optica 5(10), 1236 (2018).
[Crossref]

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

Pistolas, C.

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

Posselt, J.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Rajbhandari, S.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

Richards, B. S.

Robertson, N.

Rowan, B. C.

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

Sasser, G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Saxena, K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Scherer, A.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Smith, J. T.

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Stockman, S. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tan, I.-H.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tan, T. S.

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, “Luminescent solar concentrators - A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Wilson, L. R.

Wu, C.-H.

N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
[Crossref]

Wu, Q.

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

Yeh, N. G.

N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
[Crossref]

Zewail, A. H.

Zhu, J.

Zhu, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

IEEE Commun. Mag. (1)

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, and I. Papakonstantinou, “Visible light communications using organic light emitting diodes,” IEEE Commun. Mag. 51(8), 148–154 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Nat. Photonics (1)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

P. Pichon, A. Barbet, D. Blengino, P. Legavre, T. Gallinelli, F. Druon, J.-P. Blanchot, F. Balembois, S. Forget, S. Chénais, and P. Georges, “High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser,” Opt. Laser Technol. 96, 7–12 (2017).
[Crossref]

Opt. Mater. (2)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

T. S. Parel, C. Pistolas, L. Danos, and T. Markvart, “Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators,” Opt. Mater. 42, 532–537 (2015).
[Crossref]

Optica (2)

Renew. Energy (1)

W. G. J. H. M. van Sark, “Luminescent solar concentrators - A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Renew. Sustain. Energy Rev. (1)

N. G. Yeh, C.-H. Wu, and T. C. Cheng, “Light-emitting diodes—Their potential in biomedical applications,” Renew. Sustain. Energy Rev. 14(8), 2161–2166 (2010).
[Crossref]

Sci. Rep. (1)

B. A. Katchman, J. T. Smith, U. Obahiagbon, S. Kesiraju, Y.-K. Lee, B. O’Brien, K. Kaftanoglu, J. Blain Christen, and K. S. Anderson, “Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers,” Sci. Rep. 6(1), 29057 (2016).
[Crossref] [PubMed]

Other (4)

J. Chaves, Introduction to nonimaging optics. CRC Press, published July 26, 2017, ISBN 9781138747906.

J. D. Bullough, “LEDs and automotive lighting applications,” Nitride Semicond. Light. Diodes, pp. 647–658, Jan. 2018.

E. F. Schubert, Light-emitting diodes. Cambridge University, 2006.

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J.-P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “New scheme for pumping solid-state lasers based on LED-pumped luminescent concentrators,” in Optics InfoBase Conference Papers, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Left: geometry of the of the Ce:YAG slab concentrator. Right: representation in k space of internal rays in a reabsorption-free concentrator. The blue circle dots picture a possible trajectory of a “trapped ray” which cannot escape throughout any of the 6 faces. Red dots in the escape cap represent the 4 possible k vectors that a ray exiting by the front smallest facet can take: its ky component is conserved while the other components bounce between ± kx and ± kz, still remaining inside the same “escape cap” (see text for more details).
Fig. 2
Fig. 2 A wedged concentrator (on the right) in k space (on the left, partial representation). Rays that can escape through the tilted up facet belong to the tilted escape cone slided upwards on the sphere by same polar angle β (on top side, hatched), but may also belong to its mirror image about z axis (bottom side, hatched). To determine whether some “trapped” rays still exist, escape caps and all their images about all possible mirror symmetries have to be drawn: here, a thin stripe of trapped rays remains for some oblique rays. Note: rays exiting the bottom extremity are given by the image of bottom cap about the plane tilted by angle β (not shown).
Fig. 3
Fig. 3 a) experimental set up for radiant intensity indicatrix measurement. A fiber-coupled power-meter (fiber core diameter: 1 mm) rotates at a fixed distance of 70 mm around the central point of the edge emitting area of the Ce:YAG luminescent concentrator. b) Intensity profiles (the radius in the polar diagram is set proportional to the intensity in Watts per steradian in this given direction) of a Ce:YAG luminescent concentrator excited at λ = 450 nm: i) with polished emission facet ; ii) with frosted output surface. Theoretical Lambert’s cosine law appears in dotted lines on i) and ii).
Fig. 4
Fig. 4 Power extraction efficiency η measured (black dots) and simulated by ray tracing (linked crosses) for wedged concentrators with different wedge angles β. Pup is the power extracted through the tilted output surface and Pdown is the power emitted through the bottom base of the slab inserted into the integrating sphere. Presidue represents the remaining light emitted by the portion of small side facets inserted into the sphere. Inset: Experimental setup: the concentrator was introduced in the integrating sphere up to 1 mm behind the wedge limit on the top surface to ensure that all light coming from the wedge is efficiently collected.
Fig. 5
Fig. 5 Intensity profiles measured for each wedge angle (left) and calculated using ray tracing simulations (right). These profile sections correspond to one angular coordinate γ about the wedge rotation axis.
Fig. 6
Fig. 6 3D ray diagram of light emitted through the top tilted surface (only) of a Luminescent Concentrator with a wedge angle of 60°. The central direction ( α=φ=0) corresponds to the normal of the tilted surface, α describes rotation about wedge axis. The circular dark region on top is due to the overlap of the escape cone of the tilted surface with that of the largest top surface.
Fig. 7
Fig. 7 (See text) a) Simple representation of the path of some rays experiencing different numbers of TIR before escaping the LC. In blue, rays suffering only TIR can be represented as coming from the image of the source by the LC large face (point labelled “1”), while rays having bounced twice before exiting can be represented as coming from the point “2” (orange). b) extension of this representation to multiple TIR on both large LC faces.
Fig. 8
Fig. 8 Comparison of the intensity indicatrix under excitation at 450 nm (high absorption coefficient, leading to a localization of the emitting fluorophores mainly near the surface that is illuminated by the source) and at 400 nm (low absorption leading to quasi-homogeneous excitation throughout the LC thickness).

Tables (1)

Tables Icon

Table 1 Summary of photometric properties of wedged concentrators compared to the reference polished symmetric slab.   γ max is the value of γ corresponding to the maximum intensity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η escape = Ω escape 4π = 1 2 [ 1 1 1 n 2 ]
η trapped =1 6 Ω escape 4π =3 1 1 n 2 2
C B ( γ )= B out ( γ ) B LED = C ref ×g( γ )× cosβ cos[ βγ ]

Metrics