Abstract

We experimentally demonstrate an aggregate 86-GBaud (over three sub-bands and one polarization) signal generation based on subcarrier multiplexing technique using IQ mixers, an electrical 90 degree hybrid, and diplexers. The electrical hybrid allows transmitter-side digital signal processing to be simplified to pulse shaping and digital pre-emphasis. We verified the configuration by testing the performance of an 86-GBaud Nyquist-shaped 16 quadrature amplitude modulation signal with differential bit encoding. The implementation penalty assuming 7% hard-decision forward error correction is reduced to 2 dB by utilizing a 31-tap decision-directed least mean square based multiple-input multiple-output equalizer for sideband crosstalk mitigation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

Jiachuan Lin, Hassan Sepehrian, Leslie A. Rusch, and Wei Shi
Opt. Express 27(4) 5610-5619 (2019)

40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals

Guo-Wei Lu, Mats Sköld, Pontus Johannisson, Jian Zhao, Martin Sjödin, Henrik Sunnerud, Mathias Westlund, Andrew Ellis, and Peter A. Andrekson
Opt. Express 18(22) 23062-23069 (2010)

Optical transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals

Hyeon Yeong Choi, Takehiro Tsuritani, and Itsuro Morita
Opt. Express 20(27) 28772-28778 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
    [Crossref]
  2. F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
    [Crossref]
  3. M. Huang, A. Tanaka, E. Ip, Y. Huang, D. Qian, Y. Zhang, S. Zhang, P. N. Ji, I. B. Djordjevic, T. Wang, Y. Aono, S. Murakami, T. Tajima, T. J. Xia, and G. A. Wellbrock, “Terabit/s Nyquist Superchannels in High Capacity Fiber Field Trials Using DP-16QAM and DP-8QAM Modulation Formats,” J. Lightwave Technol. 32(4), 776–782 (2014).
    [Crossref]
  4. X. Zhou and L. E. Nelson, “400G WDM Transmission on the 50 GHz Grid for Future Optical Networks,” J. Lightwave Technol. 30(24), 3779–3792 (2012).
    [Crossref]
  5. R. Rios-Müller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jennevé, L. Schmalen, and G. Charlet, “1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.1.
    [Crossref]
  6. H. Mardoyan, R. Rios-Müller, M. A. Mestre, P. Jennevé, L. Schmalen, A. Ghazisaeidi, P. Tran, S. Bigo, and J. Renaudier, “Transmission of Single-Carrier Nyquist-Shaped 1-Tb/s Line-Rate Signal over 3,000 km,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.2.
    [Crossref]
  7. J. Zhang, J. Yu, and N. Chi, “Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses,” Sci. Rep. 5(1), 13649 (2015).
    [Crossref] [PubMed]
  8. H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultra-wide-band multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
    [Crossref]
  9. H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).
  10. J. Zhang, J. Yu, B. Zhu, and H. Chien, “WDM Transmission of Single-Carrier 120-GBd ETDM PDM-16QAM Signals Over 1200-km Terrestrial Fiber Links,” J. Lightwave Technol. 35(4), 1033–1040 (2017).
    [Crossref]
  11. X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. J. Winzer, “All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
    [Crossref]
  12. A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
    [Crossref]
  13. T. Zhang, C. Sanchez, S. Sygletos, I. Phillips, and A. Ellis, “Amplifier-free 200-Gb/s tandem SSB doubly differential QPSK signal transmission over 80-km SSMF with simplified receiver-side DSP,” Opt. Express 26(7), 8418–8430 (2018).
    [Crossref] [PubMed]
  14. Available at http://www.markimicrowave.com/Assets/datasheets/QH-0550.pdf .
  15. J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
    [Crossref] [PubMed]
  16. Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).
  17. W. Weber, “Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems,” IEEE Trans. Commun. 26(3), 385–391 (1978).
    [Crossref]
  18. Available at https://www.markimicrowave.com/Assets/datasheets/DPX-1721.pdf .
  19. Available at https://www.viavisolutions.com/en-us/literature/band-osnrmeasurements-40-g-polarization-multiplexed-qpsk-signals-using-fielddeploy-white-paper-en.pdf .
  20. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M-QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  21. S. Fan, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, M. Morsy-Osman, M. Y. S. Sowailem, Y. Li, J. Wu, and D. V. Plant, “264 Gb/s Twin-SSB-KK Direct Detection Transmission Enabled by MIMO Processing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.5.
    [Crossref]
  22. R. Brennan and T. Schneider, “An ultra low-power DSP system with a flexible filterbank,” Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), Pacific Grove, CA, USA, 2001, pp. 809–813.
    [Crossref]

2018 (1)

2017 (2)

2016 (1)

2015 (1)

J. Zhang, J. Yu, and N. Chi, “Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses,” Sci. Rep. 5(1), 13649 (2015).
[Crossref] [PubMed]

2014 (2)

2012 (1)

2009 (1)

2006 (1)

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
[Crossref]

2004 (1)

Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).

2000 (1)

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

1978 (1)

W. Weber, “Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems,” IEEE Trans. Commun. 26(3), 385–391 (1978).
[Crossref]

Abrate, S.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Adamiecki, A.

Alaimo, A.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Aono, Y.

Belmonte, M.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Bosco, G.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Brinciotti, A.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Cai, Y.

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Carena, A.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Chandrasekhar, S.

Chen, X.

Chen, Y.

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Chi, N.

J. Zhang, J. Yu, and N. Chi, “Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses,” Sci. Rep. 5(1), 13649 (2015).
[Crossref] [PubMed]

J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
[Crossref] [PubMed]

Chien, H.

J. Zhang, J. Yu, B. Zhu, and H. Chien, “WDM Transmission of Single-Carrier 120-GBd ETDM PDM-16QAM Signals Over 1200-km Terrestrial Fiber Links,” J. Lightwave Technol. 35(4), 1033–1040 (2017).
[Crossref]

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Chien, H. C.

Cigliutti, R.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Curri, V.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Djordjevic, I. B.

Ellis, A.

Ellis, A. D.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
[Crossref]

Forghieri, F.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Gavioli, G.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Gunning, F. C. G.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
[Crossref]

Hashimoto, T.

Healy, T.

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
[Crossref]

Hoffmann, S.

Huang, M.

Huang, Y.

Ip, E.

Ji, P. N.

Kanazawa, S.

La Porta, A.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Meng, X. J.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Miyamoto, Y.

Murakami, S.

Nagatani, M.

Narasimha, A.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Nelson, L. E.

Noe, R.

Nosaka, H.

Pfau, T.

Phillips, I.

Piciaccia, S.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Poggiolini, P.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Pupalaikis, P.

Qian, D.

Randel, S.

Raybon, G.

Sanchez, C.

Sano, A.

Serpedin, E.

Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).

Shi, K.

Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).

Sygletos, S.

Tajima, T.

Tanaka, A.

Torrengo, E.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

Wang, T.

M. Huang, A. Tanaka, E. Ip, Y. Huang, D. Qian, Y. Zhang, S. Zhang, P. N. Ji, I. B. Djordjevic, T. Wang, Y. Aono, S. Murakami, T. Tajima, T. J. Xia, and G. A. Wellbrock, “Terabit/s Nyquist Superchannels in High Capacity Fiber Field Trials Using DP-16QAM and DP-8QAM Modulation Formats,” J. Lightwave Technol. 32(4), 776–782 (2014).
[Crossref]

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Wang, Y.

Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).

Weber, W.

W. Weber, “Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems,” IEEE Trans. Commun. 26(3), 385–391 (1978).
[Crossref]

Wei, X.

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Wellbrock, G. A.

Winzer, P. J.

Wu, M. C.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Xia, T. J.

Xia, Y.

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Xiao, X.

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Yablonovitch, E.

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

Yamazaki, H.

Yu, J.

J. Zhang, J. Yu, B. Zhu, and H. Chien, “WDM Transmission of Single-Carrier 120-GBd ETDM PDM-16QAM Signals Over 1200-km Terrestrial Fiber Links,” J. Lightwave Technol. 35(4), 1033–1040 (2017).
[Crossref]

J. Zhang, J. Yu, and N. Chi, “Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses,” Sci. Rep. 5(1), 13649 (2015).
[Crossref] [PubMed]

J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
[Crossref] [PubMed]

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Zhang, J.

Zhang, S.

Zhang, T.

Zhang, Y.

Zhou, X.

Zhu, B.

J. Zhang, J. Yu, B. Zhu, and H. Chien, “WDM Transmission of Single-Carrier 120-GBd ETDM PDM-16QAM Signals Over 1200-km Terrestrial Fiber Links,” J. Lightwave Technol. 35(4), 1033–1040 (2017).
[Crossref]

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

Electron. Lett. (1)

A. Narasimha, X. J. Meng, M. C. Wu, and E. Yablonovitch, “Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fibre links,” Electron. Lett. 36(13), 1135–1136 (2000).
[Crossref]

EURASIP J. Adv. Sig. Pr. (1)

Y. Wang, K. Shi, and E. Serpedin, “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,” EURASIP J. Adv. Sig. Pr. 2004, 856139 (2004).

IEEE Photonic Tech. L. (1)

F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of coherent WDM,” IEEE Photonic Tech. L. 18(12), 1338–1340 (2006).
[Crossref]

IEEE Trans. Commun. (1)

W. Weber, “Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems,” IEEE Trans. Commun. 26(3), 385–391 (1978).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (2)

Sci. Rep. (1)

J. Zhang, J. Yu, and N. Chi, “Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses,” Sci. Rep. 5(1), 13649 (2015).
[Crossref] [PubMed]

Other (9)

E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proceedings of IEEE European Conference and Exhibition on Optical Communication (IEEE, 2010), pp. 1–3.
[Crossref]

H. Chien, J. Yu, Y. Cai, B. Zhu, X. Xiao, Y. Xia, X. Wei, T. Wang, and Y. Chen, “Approaching Terabits per Carrier Metro-Regional Transmission Using Beyond-100GBd Coherent Optics with Propabilistically Shaped DP-64QAM Modulation,” J. Lightwave Technol. In press (2019).

R. Rios-Müller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jennevé, L. Schmalen, and G. Charlet, “1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.1.
[Crossref]

H. Mardoyan, R. Rios-Müller, M. A. Mestre, P. Jennevé, L. Schmalen, A. Ghazisaeidi, P. Tran, S. Bigo, and J. Renaudier, “Transmission of Single-Carrier Nyquist-Shaped 1-Tb/s Line-Rate Signal over 3,000 km,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3G.2.
[Crossref]

Available at http://www.markimicrowave.com/Assets/datasheets/QH-0550.pdf .

Available at https://www.markimicrowave.com/Assets/datasheets/DPX-1721.pdf .

Available at https://www.viavisolutions.com/en-us/literature/band-osnrmeasurements-40-g-polarization-multiplexed-qpsk-signals-using-fielddeploy-white-paper-en.pdf .

S. Fan, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, M. Morsy-Osman, M. Y. S. Sowailem, Y. Li, J. Wu, and D. V. Plant, “264 Gb/s Twin-SSB-KK Direct Detection Transmission Enabled by MIMO Processing,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.5.
[Crossref]

R. Brennan and T. Schneider, “An ultra low-power DSP system with a flexible filterbank,” Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), Pacific Grove, CA, USA, 2001, pp. 809–813.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Architecture of the proposed SCM-based 86-GBaud signal generation.
Fig. 2
Fig. 2 Optical spectrum of (a) only one up-converted signal input to the electrical 90 degree hybrid, (b) the combined BB signal and −14-GHz digitally frequency shifted LSB and USB signals at default (0 V) and optimized DC offsets of the arbitrary waveform generator.
Fig. 3
Fig. 3 Magnitude response of the receiver-side 43-tap adaptive equalizer for channel estimation of (a) LSB, (b) BB and (c) USB.
Fig. 4
Fig. 4 Power spectral density of the detected (a) LSB, (b) BB and (c) USB signals.
Fig. 5
Fig. 5 Experimental setup for the 86-GBaud 16QAM system. PS: phase shifter; OBPF: optical bandpass filter; VOA: variable optical attenuator; OSA: optical spectrum analyzer.
Fig. 6
Fig. 6 OSNR performance of (a) 24-GBaud LSB and USB signals, (b) 38-GBaud BB signal with and without digital pre-emphasis.16QAM with differential bit encoding (named D16QAM in the legends) was used for all the signals.
Fig. 7
Fig. 7 (a) Optical spectrum of the 86-GBaud differential bit encoded 16QAM signal. (b) Experimental OSNR performance of the 86-GBaud SCM 16QAM signal with inset constellations for each recovered sub-channel signal at 33-dB OSNR.
Fig. 8
Fig. 8 Optical spectrum in the case of only USB signal using ideal hybrid (black) or imperfect hybrid with only 1-dB amplitude imbalance (blue), only 5° phase imperfection (red) or both impairments (green).
Fig. 9
Fig. 9 (a) Receiver-side DSP flows and (b) OSNR performance of the simulated single polarization 48-GBaud TSSB signal detected by single 70-GHz full-band receiver in the case of ideal or imperfect electrical 90 degree hybrid with/without 31-tap 2 × 2 MIMO equalizer.
Fig. 10
Fig. 10 (a) Receiver-side DSP flows and (b) OSNR performance of the simulated dual-polarization 48-GBaud TSSB signal detected by single 70-GHz full-band receiver in the case of ideal or imperfect electrical 90 degree hybrid with/without 31-tap 4 × 4 MIMO equalizer.
Fig. 11
Fig. 11 (a) OSNR performance of the 86-GBaud 16QAM experimental system with/without 31-tap MIMO equalizer. Inset constellations are for each sub-channel signal recovered with MIMO equalizer at 33-dB OSNR. (b) Simulated OSNR performance of the 86-GBaud SCM 16QAM numerical system using single 70-GHz 200-GSa/s coherent receiver (blue dots) or three 33-GHz 100-GSa/s coherent receivers (red dots) in the case of ideal electrical 90 degree hybrid.

Metrics