Abstract

A polarization-difference channeled imaging spectropolarimeter (PDCISP) using double-Wollaston prism is presented. It enables simultaneous acquisition of a set of three-channel interferograms corresponding to orthogonal polarization modulation. This brings a large range expanding of optical path difference for useful channels, and the major limitation of channeled spectropolarimetry (CSP), namely the channel crosstalk, can be greatly suppressed by using interferogram difference processing. As a result, full resolution intensity spectrum, as well as high-resolution polarimetric signatures, can be obtained with fewer reconstruction errors, compared to conventional CSP-based systems. The PDCISP is insensitive to alignment errors of retarders and maintains the snapshot feature (1D spatial imaging). The effectiveness of the proposed method is demonstrated by the simulation results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stokes imaging spectropolarimeter based on channeled polarimetry with full-resolution spectra and aliasing reduction

Chunmin Zhang, Naicheng Quan, and Tingkui Mu
Appl. Opt. 57(21) 6128-6134 (2018)

High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope

Chunmin Zhang, Qiwei Li, Tingyu Yan, Tingkui Mu, and Yutong Wei
Opt. Express 24(20) 23314-23332 (2016)

Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer

Qin Liu, Caixun Bai, Jie Liu, Jiale He, and Jianxin Li
Opt. Express 25(17) 19904-19922 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  2. X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
    [Crossref] [PubMed]
  3. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51(21), 5302–5309 (2012).
    [Crossref] [PubMed]
  4. D. A. Belyaev, K. B. Yushkov, S. P. Anikin, Y. S. Dobrolenskiy, A. Laskin, S. N. Mantsevich, V. Y. Molchanov, S. A. Potanin, and O. I. Korablev, “Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared,” Opt. Express 25(21), 25980–25991 (2017).
    [Crossref] [PubMed]
  5. H. J. Hoeijmakers, M. L. J. Arts, F. Snik, C. U. Keller, D. M. Stam, and J. M. Kuiper, “Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth,” Opt. Express 24(19), 21435–21453 (2016).
    [Crossref] [PubMed]
  6. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
    [Crossref] [PubMed]
  7. K. H. Nordsieck, “A simple polarimetric system for the Lick Observatory image-tube scanner,” Publ. Astron. Soc. Pac. 86(511), 324–329 (1974).
    [Crossref]
  8. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
    [Crossref] [PubMed]
  9. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
    [Crossref] [PubMed]
  10. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  11. J. Li, J. Zhu, and H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett. 35(22), 3784–3786 (2010).
    [Crossref] [PubMed]
  12. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [Crossref] [PubMed]
  13. H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
    [Crossref] [PubMed]
  14. X. Meng, J. Li, D. Liu, and R. Zhu, “Fourier transform imaging spectropolarimeter using simultaneous polarization modulation,” Opt. Lett. 38(5), 778–780 (2013).
    [Crossref] [PubMed]
  15. J. Craven, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
    [Crossref]
  16. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. 48(7), 1337–1346 (2009).
    [Crossref] [PubMed]
  17. T. Yan, C. Zhang, J. Zhang, N. Quan, and C. Tong, “High resolution channeled imaging spectropolarimetry based on liquid crystal variable retarder,” Opt. Express 26(8), 10382–10391 (2018).
    [Crossref] [PubMed]
  18. B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Opt. Express 24(25), 28923–28935 (2016).
    [Crossref] [PubMed]
  19. A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Opt. Lett. 31(22), 3279–3281 (2006).
    [Crossref] [PubMed]
  20. M. Francon and S. Mallick, Polarization Interferometers: Application in Microscopy and Macroscopy (Wiley-Interscience, 1972).
  21. P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
    [Crossref]
  22. T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).
  23. B. Yang, J. Zhang, C. Yan, and X. Ju, “Methods of polarimetric calibration and reconstruction for a fieldable channeled dispersive imaging spectropolarimeter,” Appl. Opt. 56(30), 8477–8491 (2017).
    [Crossref] [PubMed]
  24. T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
    [Crossref]

2018 (1)

2017 (2)

2016 (3)

2013 (3)

2012 (1)

2011 (1)

2010 (2)

2009 (3)

F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. 48(7), 1337–1346 (2009).
[Crossref] [PubMed]

T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (2)

1999 (2)

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
[Crossref] [PubMed]

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

1993 (1)

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

1974 (1)

K. H. Nordsieck, “A simple polarimetric system for the Lick Observatory image-tube scanner,” Publ. Astron. Soc. Pac. 86(511), 324–329 (1974).
[Crossref]

Anikin, S. P.

Anna, G.

Arts, M. L. J.

Belyaev, D. A.

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Chenault, D. B.

Craven, J.

J. Craven, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
[Crossref]

Craven-Jones, J.

Dereniak, E. L.

Dobrolenskiy, Y. S.

Dolfi, D.

Gerhart, G. R.

Goldstein, D. L.

Goudail, F.

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Hagen, N. A.

Hammer, P. D.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

Harris, A. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Hayakawa, M.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Opt. Lett. 31(22), 3279–3281 (2006).
[Crossref] [PubMed]

Hoeijmakers, H. J.

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Jia, C.

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Ju, X.

Karalidi, T.

Kato, T.

Keller, C. U.

Korablev, O. I.

Kudenov, M. W.

Kuiper, J. M.

Laskin, A.

Li, J.

Li, Q.

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Liu, D.

Mantsevich, S. N.

Matoba, J.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

Meng, X.

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Molchanov, V. Y.

Mu, T.

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Mu, T. K.

T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Naito, H.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

Nordsieck, K. H.

K. H. Nordsieck, “A simple polarimetric system for the Lick Observatory image-tube scanner,” Publ. Astron. Soc. Pac. 86(511), 324–329 (1974).
[Crossref]

Oka, K.

Okabe, H.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Opt. Lett. 31(22), 3279–3281 (2006).
[Crossref] [PubMed]

Peterson, D. L.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

Potanin, S. A.

Quan, N.

Ren, W.

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Sauer, H.

Shaw, J. A.

Smith, W. H.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

Snik, F.

Stam, D. M.

Stapelbroek, M. G.

Taniguchi, A.

Tong, C.

Tyo, J. S.

Valero, F. P. J.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

Wei, Y.

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Wu, H.

Xu, T.

Yan, C.

Yan, T.

Yang, B.

Yushkov, K. B.

Zhang, C.

Zhang, C. M.

T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).

Zhang, J.

Zhang, L.

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Zhao, B. C.

T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).

Zhu, J.

Zhu, R.

Acta. Phys. Sin. (1)

T. K. Mu, C. M. Zhang, and B. C. Zhao, “Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer,” Acta. Phys. Sin. 58(6), 3877–3886 (2009).

Appl. Opt. (5)

Nat. Med. (1)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Mu, C. Zhang, C. Jia, W. Ren, L. Zhang, and Q. Li, “Alignment and retardance errors, and compensation of a channeled spectropolarimeter,” Opt. Commun. 294, 88–95 (2013).
[Crossref]

Opt. Eng. (1)

J. Craven, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
[Crossref]

Opt. Express (7)

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
[Crossref] [PubMed]

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

D. A. Belyaev, K. B. Yushkov, S. P. Anikin, Y. S. Dobrolenskiy, A. Laskin, S. N. Mantsevich, V. Y. Molchanov, S. A. Potanin, and O. I. Korablev, “Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared,” Opt. Express 25(21), 25980–25991 (2017).
[Crossref] [PubMed]

H. J. Hoeijmakers, M. L. J. Arts, F. Snik, C. U. Keller, D. M. Stam, and J. M. Kuiper, “Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth,” Opt. Express 24(19), 21435–21453 (2016).
[Crossref] [PubMed]

X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
[Crossref] [PubMed]

T. Yan, C. Zhang, J. Zhang, N. Quan, and C. Tong, “High resolution channeled imaging spectropolarimetry based on liquid crystal variable retarder,” Opt. Express 26(8), 10382–10391 (2018).
[Crossref] [PubMed]

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Opt. Express 24(25), 28923–28935 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, “An imaging interferometer for terrestrial remote sensing,” Proc. SPIE 1937, 244–255 (1993).
[Crossref]

Publ. Astron. Soc. Pac. (1)

K. H. Nordsieck, “A simple polarimetric system for the Lick Observatory image-tube scanner,” Publ. Astron. Soc. Pac. 86(511), 324–329 (1974).
[Crossref]

Rev. Sci. Instrum. (1)

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80(8), 083104 (2009).
[Crossref] [PubMed]

Other (1)

M. Francon and S. Mallick, Polarization Interferometers: Application in Microscopy and Macroscopy (Wiley-Interscience, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of CSP-based interference imaging spectropolarimeter.
Fig. 2
Fig. 2 A real channeled interferogram recorded by our CIISP principle prototype, the seven channels in the interferogram are separated in OPD space by the retardances φ1 and φ2. Spacing between each channel is for a 2:1 thickness ratio (d2:d1).
Fig. 3
Fig. 3 (a) The narrow band incident light with 30° linear polarization state and (b) its simulated seven-channel interferogram with significant crosstalk errors. (c) The broad band incident light with sharp absorption signatures and varying polarization states. (d) Simulated seven-channel interferogram with obvious crosstalk errors within C0 and C ± 2 channels.
Fig. 4
Fig. 4 Optical layout of DWP-based PDCISP system.
Fig. 5
Fig. 5 Schematic of double-Wollaston prism pair.
Fig. 6
Fig. 6 Distribution of channeled interferogram formed by CIISP and PDCISP with thickness ratio of d 1 / d 2 = 1 / 2 and d 1 / d 2 = 3 , respectively. The C 0 in PDCISP is separated from other channels, so only two channels, C 1 and C 2 , would be recorded by CCD and take up the whole OPD range.
Fig. 7
Fig. 7 (a) Birefringence of uniaxial crystal in VIS and NIR bands. (b) Distribution of OPD on CCD plane.
Fig. 8
Fig. 8 (a) Simulated channeled interferograms formed in upper and lower part of the CCD plane. The SNR was set to a quite low level of about 200 (23dB). (b) The high resolution interferograms acquired via Eqs. (12) and (13).
Fig. 9
Fig. 9 (a) Reconstruction result of each Stokes parameter using (a) a single three-channel interferogram and (b) high resolution interferograms.
Fig. 10
Fig. 10 Schematic of key components of channeled spectropolarimetry. Green arrows indicate ideal alignment, and red arrows indicate actual alignment.
Fig. 11
Fig. 11 Part of simulated interferogram with alignment errors of ε 1 = 2 , ε 2 = 1.5 . (a) Seven-channel interferogram with thickness ratio of d 1 / d 2 = 1 / 2 in conventional CIISP. (b) Three-channel interferogram with thickness ratio of d 1 / d 2 = 3 in PDCISP, and the C 4 ' channel is filtered by the CCD plane.

Tables (1)

Tables Icon

Table 1 RMS error of the reconstructed Stokes parameters using different channeled interferograms

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I C C D ( Δ z ) σ 1 σ 2 ( 1 + cos φ z ) ( S 0 + S 1 cos φ 2 + S 2 sin φ 1 sin φ 2 S 3 cos φ 1 sin φ 2 ) d σ ,
φ j ( σ ) = 2 π σ L j = 2 π σ ( n e n ) o d j ,
φ z ( σ ) = 2 π σ Δ z ,
I C C D ( Δ z ) σ 1 σ 2 cos φ z [ S 0 + S 1 2 e i φ 2 + S 1 2 e i φ 2 + S 2 + i S 3 4 e i ( φ 2 φ 1 ) + S 2 i S 3 4 e i ( φ 1 φ 2 ) + S 2 + i S 3 4 e i ( φ 1 + φ 2 ) + S 2 i S 3 4 e i ( φ 1 + φ 2 ) ] d σ = C 0 + C 1 + C 1 + C 2 + C 2 + C 3 + C 3 .
Δ z = 2 ( n e n o ) h tan θ ,
S o u t i = M P 2 M D W P i M P A i M R 2 M R 1 S i n ,
I u p = a u p W i n ( Δ z u p ) 8 σ 1 σ 2 cos φ D W P u p ( S 0 + S 1 cos φ 2 + S 2 sin φ 1 sin φ 2 S 3 cos φ 1 sin φ 2 ) d σ ,
I d o w n = a d o w n W i n ( Δ z d o w n ) 8 σ 1 σ 2 cos φ D W P d o w n ( S 0 + S 1 cos φ 2 + S 2 sin φ 1 sin φ 2 S 3 cos φ 1 sin φ 2 ) d σ ,
W i n ( Δ z i ) = { 1 , | Δ C Z | Δ z i | Δ max | 0 , o t h e r s ,
φ j ( σ ) = 2 π σ L j = 2 π σ B ( σ ) d j ,
φ D W P i = 2 π σ Δ z i ,
I u p a u p a d o w n I d o w n W i n ( Δ z ) σ 1 σ 2 S 0 cos φ D W P 4 d σ = C 0 ( Δ z ) .
I u p + a u p a d o w n I d o w n W i n ( Δ z ) σ 1 σ 2 cos φ D W P 4 [ S 1 2 e i φ 2 + S 1 2 e i φ 2 + S 2 i S 3 4 e i ( φ 1 φ 2 ) + S 2 + i S 3 4 e i ( φ 2 φ 1 ) + S 2 + i S 3 4 e i ( φ 1 + φ 2 ) + S 2 i S 3 4 e i ( φ 1 + φ 2 ) ] d σ = W i n ( Δ z ) ( C 1 + C 1 + C 2 + C 2 + C 3 + C 3 ) = C 1 + C 2 .
S 0 ( σ ) = 4 { C 0 } ,
S 1 ( σ ) = 8 { C 1 } exp ( i φ 2 ) ,
S 2 ( σ ) = 16 r e a l { { C 2 } exp [ i ( φ 1 φ 2 ) ] } ,
S 3 ( σ ) = 16 i m a g { { C 2 } exp [ i ( φ 1 φ 2 ) ] } .
S o u t ' i = M P 2 M D W P i M P A i M R 2 ' ( π 4 + ε 2 , φ 2 ) M R 1 ' ( ε 1 , φ 1 ) S i n , ( i = u p , d o w n ) ,
I e u p a u p a d o w n I e d o w n W i n ( Δ z ) σ 1 σ 2 S 0 cos φ D W P 4 d σ = C 0 ( Δ z ) ,
I e u p + a u p a d o w n I e d o w n W i n ( Δ z ) σ 1 σ 2 E ( σ ) cos φ D W P 4 d σ ,
E ( σ ) = [ sin 2 ε 2 sin 2 ( ε 2 ε 1 ) ( S 1 cos 2 ε 1 + S 2 sin 2 ε 1 ) ] / 2 + [ cos 2 ε 2 cos 2 ( ε 2 ε 1 ) ( S 1 cos 2 ε 1 + S 2 sin 2 ε 1 ) ] ( e i φ 2 + e i φ 2 ) / 4 { cos 2 ε 2 sin 2 ε 1 [ 1 + sin 2 ( ε 2 ε 1 ) ] S 1 cos 2 ε 2 [ 1 + sin 2 ( ε 2 ε 1 ) ] [ S 2 cos 2 ε 1 + i S 3 ] } e i ( φ 2 φ 1 ) / 8 { cos 2 ε 2 sin 2 ε 1 [ 1 + sin 2 ( ε 2 ε 1 ) ] S 1 cos 2 ε 2 [ 1 + sin 2 ( ε 2 ε 1 ) ] [ S 2 cos 2 ε 1 i S 3 ] } e i ( φ 2 φ 1 ) / 8 + { cos 2 ε 2 sin 2 ε 1 [ 1 sin 2 ( ε 2 ε 1 ) ] S 1 cos 2 ε 2 [ 1 sin 2 ( ε 2 ε 1 ) ] [ S 2 cos 2 ε 1 i S 3 ] } e i ( φ 2 + φ 1 ) / 8 + { cos 2 ε 2 sin 2 ε 1 [ 1 sin 2 ( ε 2 ε 1 ) ] S 1 cos 2 ε 2 [ 1 sin 2 ( ε 2 ε 1 ) ] [ S 2 cos 2 ε 1 + i S 3 ] } e i ( φ 2 + φ 1 ) / 8 + sin 2 ε 2 cos 2 ( ε 2 ε 1 ) ( S 1 sin 2 ε 1 S 2 cos 2 ε 1 + i S 3 ) e i φ 1 / 4 + sin 2 ε 2 cos 2 ( ε 2 ε 1 ) ( S 1 sin 2 ε 1 S 2 cos 2 ε 1 i S 3 ) e i φ 1 / 4 ,

Metrics