Abstract

A differential optical sectioning microscopy with structured-illumination (DOSM-SI) with enhanced axial precision is explored in this paper for three-dimensional (3D) measurement. As the segment of data on the linear region of the contrast depth response curve (CDR) is very sensitive to variation of the height information, the DOSM-SI introduces a new CDR2 with an axial shift to intersect the linear region of the CDR1, which is achieved by using two charge-coupled detectors (CCDs) in the optical path. The CCD1 is located on the imaging plane and the CCD2 is displaced from the imaging plane. The difference between the CDR1 and CDR2 for each pixel is defined as the differential depth response curve (DCDR). Further, the zero-crossing point of the DCDR for each pixel is accurately extracted using the line-fitting technique, and finally, the sample surface can be reconstructed with a high resolution and precision. Since the slope around the zero-crossing point of the DCDR is apparently larger than that of near the focal position, an enhanced resolution and precision can be realized in DOSM-SI. The experiments and theoretical analysis are elaborated to demonstrate the feasibility of DOSM-SI.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy

Kevin O’Holleran and Michael Shaw
Biomed. Opt. Express 5(8) 2580-2590 (2014)

Precise optical surface profilometry using innovative chromatic differential confocal microscopy

Liang-Chia Chen, Duc Trung Nguyen, and Yi-Wei Chang
Opt. Lett. 41(24) 5660-5663 (2016)

Adaptive optics for structured illumination microscopy

Delphine Débarre, Edward J. Botcherby, Martin J. Booth, and Tony Wilson
Opt. Express 16(13) 9290-9305 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Abdelaal, “Functional surfaces for tribological applications: inspiration and design,” Surf. Topogr. 4(4), 014004 (2016).
  2. F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
    [Crossref] [PubMed]
  3. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
    [Crossref] [PubMed]
  4. D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
    [Crossref] [PubMed]
  5. J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
    [Crossref]
  6. M. Vogel, Z. Yang, A. Kessel, C. Kranitzky, C. Faber, and G. Häusler, “Structured-illumination microscopy on technical surfaces: 3d metrology with nanometer sensitivity,” Proceedings of SPIE - The International Society for Optical Engineering, 8082. (2011)
    [Crossref]
  7. G. Haeusler, M. Vogel, Z. Yang, A. Kessel, and C. Faber, “SIM and Deflectometry: New Tools to Acquire Beautiful, SEM-like 3D Images,” Applied Industrial Optics: Spectroscopy, Imaging & Metrology, Optical Society of America (2011).
  8. H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
    [Crossref]
  9. Z. Xie, Y. Tang, Y. Zhou, and Q. Deng, “Surface and thickness measurement of transparent thin-film layers utilizing modulation-based structured-illumination microscopy,” Opt. Express 26(3), 2944–2953 (2018).
    [Crossref] [PubMed]
  10. N. Hagen, L. Gao, and T. S. Tkaczyk, “Quantitative sectioning and noise analysis for structured illumination microscopy,” Opt. Express 20(1), 403–413 (2012).
    [Crossref] [PubMed]
  11. K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12(8), 084010 (2010).
    [Crossref]
  12. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  13. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
    [Crossref] [PubMed]
  14. M. Trusiak, K. Patorski, and T. Tkaczyk, “Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing,” 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, International Society for Optics and Photonics (2014).
  15. P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
    [Crossref]
  16. D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
    [Crossref]
  17. P. A. Stokseth, “Properties of a Defocused Optical System,” J. Opt. Soc. Am. 59(10), 1314–1321 (1969).
    [Crossref]
  18. A. Possolo and C. Elster, “Evaluating the uncertainty of input quantities in measurement models,” Metrologia 51(3), 339–353 (2014).
    [Crossref]
  19. H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust features,” Proceedings of the 9th European conference on Computer Vision - Volume Part I. Springer, Berlin, Heidelberg (2006).
    [Crossref]

2018 (1)

2016 (3)

H. A. Abdelaal, “Functional surfaces for tribological applications: inspiration and design,” Surf. Topogr. 4(4), 014004 (2016).

F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
[Crossref] [PubMed]

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

2014 (2)

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

A. Possolo and C. Elster, “Evaluating the uncertainty of input quantities in measurement models,” Metrologia 51(3), 339–353 (2014).
[Crossref]

2013 (1)

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

2012 (2)

N. Hagen, L. Gao, and T. S. Tkaczyk, “Quantitative sectioning and noise analysis for structured illumination microscopy,” Opt. Express 20(1), 403–413 (2012).
[Crossref] [PubMed]

P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
[Crossref]

2011 (1)

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

2010 (1)

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12(8), 084010 (2010).
[Crossref]

2009 (2)

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

1997 (1)

1969 (1)

Abdelaal, H. A.

H. A. Abdelaal, “Functional surfaces for tribological applications: inspiration and design,” Surf. Topogr. 4(4), 014004 (2016).

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Chu, K. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Dan, D.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Deng, Q.

Elster, C.

A. Possolo and C. Elster, “Evaluating the uncertainty of input quantities in measurement models,” Metrologia 51(3), 339–353 (2014).
[Crossref]

Feng, Z.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Ford, T. N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Gao, J.

P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
[Crossref]

Gao, L.

Gong, H.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Gräf, S.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
[Crossref] [PubMed]

Hagen, N.

Heidingsfelder, P.

P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
[Crossref]

Heintzmann, R.

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12(8), 084010 (2010).
[Crossref]

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Hu, B.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Huang, R. P.

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

Jiang, T.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Juskaitis, R.

Kunz, C.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
[Crossref] [PubMed]

Lee, C. H.

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

Lei, M.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Li, A.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Li, Y.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Lim, D.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Lin, J. Y.

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

Liu, C.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Liu, J.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Luo, Q.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Müller, F. A.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
[Crossref] [PubMed]

Neil, M. A. A.

Ott, P.

P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
[Crossref]

Patorski, K.

M. Trusiak, K. Patorski, and T. Tkaczyk, “Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing,” 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, International Society for Optics and Photonics (2014).

Possolo, A.

A. Possolo and C. Elster, “Evaluating the uncertainty of input quantities in measurement models,” Metrologia 51(3), 339–353 (2014).
[Crossref]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Stokseth, P. A.

Tan, J.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Tang, Y.

Tkaczyk, T.

M. Trusiak, K. Patorski, and T. Tkaczyk, “Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing,” 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, International Society for Optics and Photonics (2014).

Tkaczyk, T. S.

Trusiak, M.

M. Trusiak, K. Patorski, and T. Tkaczyk, “Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing,” 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, International Society for Optics and Photonics (2014).

Tsai, P. S.

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

Wang, H.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Wicker, K.

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12(8), 084010 (2010).
[Crossref]

Wilson, T.

Xie, Z.

Xu, D.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Yao, B.

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Zeng, S.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

Zhou, Y.

Chin. Sci. Bull. (1)

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

J. Biomed. Opt. (2)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt. 18(6), 060503 (2013).
[Crossref] [PubMed]

J. Opt. (1)

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12(8), 084010 (2010).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Y. Lin, R. P. Huang, P. S. Tsai, and C. H. Lee, “Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015301 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

Materials (Basel) (1)

F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials (Basel) 9(6), 476 (2016).
[Crossref] [PubMed]

Metrologia (1)

A. Possolo and C. Elster, “Evaluating the uncertainty of input quantities in measurement models,” Metrologia 51(3), 339–353 (2014).
[Crossref]

Nat. Methods (1)

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Opt. Eng. (1)

P. Heidingsfelder, J. Gao, and P. Ott, “Theoretical analysis of photon noise limiting axial depth resolution for three-dimensional microscopy by incoherent structured illumination,” Opt. Eng. 51(10), 103203 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Surf. Topogr. (1)

H. A. Abdelaal, “Functional surfaces for tribological applications: inspiration and design,” Surf. Topogr. 4(4), 014004 (2016).

Other (4)

M. Trusiak, K. Patorski, and T. Tkaczyk, “Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing,” 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, International Society for Optics and Photonics (2014).

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust features,” Proceedings of the 9th European conference on Computer Vision - Volume Part I. Springer, Berlin, Heidelberg (2006).
[Crossref]

M. Vogel, Z. Yang, A. Kessel, C. Kranitzky, C. Faber, and G. Häusler, “Structured-illumination microscopy on technical surfaces: 3d metrology with nanometer sensitivity,” Proceedings of SPIE - The International Society for Optical Engineering, 8082. (2011)
[Crossref]

G. Haeusler, M. Vogel, Z. Yang, A. Kessel, and C. Faber, “SIM and Deflectometry: New Tools to Acquire Beautiful, SEM-like 3D Images,” Applied Industrial Optics: Spectroscopy, Imaging & Metrology, Optical Society of America (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The setup of the proposed DSIM
Fig. 2
Fig. 2 (a) Simulated object (b) The simulated DCDR for one pixel.
Fig. 3
Fig. 3 The Gaussian fitting method used in traditional OSM-SI and the linear fitting technique implemented in DOSM-SI
Fig. 4
Fig. 4 The slope at the zero-crossing point as a function of axial shift d
Fig. 5
Fig. 5 (a) The Simulated CDR1, CDR2 and DCDR when FWHM = 440nm. (b) The slopes of the DCDR at the zero-crossing point for different axial shifts d.
Fig. 6
Fig. 6 The slope curves of CDR and the DCDR.
Fig. 7
Fig. 7 (a) The simulated sample. (b) and (c) are the fringe patterns detected by CCD1 and CCD2 at the scanning distance of 600nm, i.e. respectively. (d) The reconstruction by the traditional DOSM-SI. (e) The reconstruction by the traditional OSM-SI. (f) The cross-section (Y = 200) profile of the reconstructions.
Fig. 8
Fig. 8 The schematic of the measurement system
Fig. 9
Fig. 9 (a) The DCDR of the measurement system (b) The differential contrast distribution of 100 pixels with the position difference 1nm.
Fig. 10
Fig. 10 (a) The contrast distribution of 100 pixels with the position difference 4nm. (b) The contrast distribution of 100 pixels with the position difference 1nm.
Fig. 11
Fig. 11 (a) The image captured by CCD1 at the scanning position of 640nm. (b) The image detected by the CCD2 at the scanning position of 1000 nm.
Fig. 12
Fig. 12 (a) The sample measured by the commercial stylus Profilometer, which is 137nm. (b) (b) The 3D map of the sample by DOSM-SI. (c) The cross-section profiles achieved by the conventional OSM-SI (the blue line) and the DOSM-SI (the red line) (d) The average height obtained from seven repetitive experiments.
Fig. 13
Fig. 13 (a) The rough surface. (b) The 3D reconstruction of the rough surface

Tables (1)

Tables Icon

Table 1 Coefficients of Taylor series

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I( x,y,z )= I 0 +C(x,y,z)cos(2πfx+ ϕ 0 )
I i (x,y,z)= I 0 +C(x,y,z)cos(2πfx+2iπ/L+ ϕ 0 )
C(x,y,z)= { [ i=1 L I i (x,y,z)sin(2iπ/L) ] 2 + [ i=1 L I i (x,y,z)cos(2iπ/L) ] 2 } 1/2 /L
C d (x,y,z)= C 1 (x,y,z) C 2 (x,y,z)
C(z)= e ( z z a mFWHM ) 2
FWHM= 0.04407λ v(1v) sin 2 [0.5arcsin(NA/n)]
C d (z)= C 2 (z) C 1 (z)= e ( z z a +d mFWHM ) 2 - e ( z z a mFWHM ) 2
z c = z a +d/2
C d (u)= U 1 (d) z c + U 3 (d) z c 3 + U 5 (d) z c 5 + U 2n+1 (d) z c 2n+1
σ z 2 = i=0 N { [ ( c i z i ) 1 ] 2 σ c 2 }
U 1 (d)= 2d× e ( d 2 4× (mFWHM) 2 ). (mFWHM) 2

Metrics