Abstract

We demonstrate that photonic emitter manipulation can be used to image the nanoscale topography of a fluorescently labeled layer in confocal imaging. We exploit the fact that a metallic probe manipulates a fluorophore’s photonic environment, and thereby its fluorescent lifetime, in a strongly distance-dependent manner. To image surface topography, a metallic probe that is not in contact with the surface is rasterscanned over a fluorescently labeled sample. The axial position of the probe is kept constant. At each lateral probe position, the fluorescence decay is recorded and analyzed to obtain probe – sample distances and hence, the topography of the sample. We present images resolving a microfabricated step of 14 nm in topography, with the probe positioned at different axial positions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter

Lishi Jiao, Mingyue Liu, Monalisa Garai, Nengyue Gao, Jing Yang, Qing-Hua Xu, and Minghui Hong
Appl. Opt. 55(31) 8722-8726 (2016)

Superresolution imaging of the local density of states in plasmon lattices

Ke Guo, Marc A. Verschuuren, and A. Femius Koenderink
Optica 3(3) 289-298 (2016)

3D superresolution microscopy by supercritical angle detection

Joran Deschamps, Markus Mund, and Jonas Ries
Opt. Express 22(23) 29081-29091 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  4. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  5. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
    [Crossref] [PubMed]
  6. B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
    [Crossref] [PubMed]
  7. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  8. R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
    [Crossref]
  9. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [Crossref]
  10. R. R. Chance, A. Prock, and R. Silbey, “Advances in chemical physics,” (Wiley & Sons, New York, 1978), pp. 1–64.
  11. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [Crossref]
  12. A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
    [Crossref]
  13. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
    [Crossref] [PubMed]
  14. Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
    [Crossref] [PubMed]
  15. J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
    [Crossref]
  16. A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
    [Crossref]
  17. A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
    [Crossref] [PubMed]
  18. R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
    [Crossref] [PubMed]
  19. C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
    [Crossref]
  20. A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
    [Crossref]
  21. S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
    [Crossref]
  22. M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
    [Crossref] [PubMed]
  23. W. Becker, “Fluorescence lifetime imaging-techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
    [Crossref] [PubMed]

2017 (1)

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

2015 (1)

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

2014 (2)

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

2012 (4)

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

W. Becker, “Fluorescence lifetime imaging-techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

2009 (4)

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

2008 (1)

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2001 (1)

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

1996 (1)

R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

1994 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Becker, W.

W. Becker, “Fluorescence lifetime imaging-techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Bennink, M. L.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Blum, C.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Cesa, Y.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

Chizhik, A. I.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Chizhik, A. M.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Cotlet, M.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Dahan, M.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Darzacq, X.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Schryver, F. C.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

Eggeling, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

El Beheiry, M.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Enderlein, J.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Escalante, M.

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

Gensch, T.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Gregor, I.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hajj, B.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Hell, S. W.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hofkens, J.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Hvam, J. M.

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Izeddin, I.

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Janshoff, A.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Johansen, J.

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Karedla, N.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Kehlenbach, R. H.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Koenderink, A. F.

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

Kristensen, P. T.

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Kwadrin, A.

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lodahl, P.

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Lund-Hansen, T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Maus, M.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Medda, R.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Molenaar, R.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

Nikolaev, I. S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pfaff, J.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Prangsma, J. C.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

Ringemann, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Rother, J.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Ruhlandt, D.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Schaffer, J.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Schönle, A.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Seidel, C. A. M.

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Sprik, R.

R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Stobbe, S.

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Subramaniam, V.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

Tiggelen, B. A.

R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

van den Broek, J. M.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

van der Werf, K. O.

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

von Middendorff, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

Wichmann, J.

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

ACS Nano (1)

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem. 73(9), 2078–2086 (2001).
[Crossref] [PubMed]

Europhys. Lett. (1)

R. Sprik, B. A. Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

J. Microsc. (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

W. Becker, “Fluorescence lifetime imaging-techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

J. Phys. Chem. C (2)

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116(31), 16666–16673 (2012).
[Crossref]

J. R. Soc. Interface (1)

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6(suppl_1), S35–S43 (2009).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8(2), 124–127 (2014).
[Crossref]

Nature (1)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

B. Hajj, M. El Beheiry, I. Izeddin, X. Darzacq, and M. Dahan, “Accessing the third dimension in localization-based super-resolution microscopy,” Phys. Chem. Chem. Phys. 16(31), 16340–16348 (2014).
[Crossref] [PubMed]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11(14), 2525–2531 (2009).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 073303 (2008).
[Crossref]

S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P. Lodahl, “Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 155307 (2009).
[Crossref]

Phys. Rev. Lett. (2)

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Molenaar, J. C. Prangsma, K. O. van der Werf, M. L. Bennink, C. Blum, and V. Subramaniam, “Microcantilever based distance control between a probe and a surface,” Rev. Sci. Instrum. 86(6), 063706 (2015).
[Crossref] [PubMed]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (1)

R. R. Chance, A. Prock, and R. Silbey, “Advances in chemical physics,” (Wiley & Sons, New York, 1978), pp. 1–64.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the feedback concept. A microcantilever with a spherical mirror serving as LDOS manipulating probe rigidly attached to the chip is brought into contact with a coverslip serving as sample substrate. The mirror-to-surface distance d is precisely controlled via the angular deflection feedback loop when the microcantilever tip is in-contact. (b) SEM image of the LDOS manipulating probe attached on the microcantilever chip. The LDOS manipulating probe is positioned far away from the microcantilever tip that is in-contact with the sample substrate.
Fig. 2
Fig. 2 Fluorescence lifetime with changing LDOS probe to fluorescent sample distance. (a) Typical decays for two probe – sample distances (36 nm and 86 nm) the measured TCSPC decay (scatter), their single exponential fit (solid and dashed line) and the retrieved lifetimes. (b) Fluorescence lifetime with distance to the LDOS manipulating probe. The probe was approached to the surface from an initial height of 400 nm with 2 nm steps.
Fig. 3
Fig. 3 Height maps recorded using AFM. (a) AFM height image of a 10 µm wide groove wet etched into glass. The histogram of the height information of the image shows that the depth of the groove is 14 ± 2.2 nm. (b) Height map of the structure covered with the fluorescent polymer film. The depth and width of the groove are preserved; the step height is 14 ± 1.5 nm.
Fig. 4
Fig. 4 Calibration curve to relate measured fluorescence lifetime to absolute fluorophore to LDOS modifying probe distance. The sample stage of the microscope was used for controlled axial displacement of the sample in steps of 8 nm. Error bars represent the 2σ estimated error of the lifetime fits, the green line is smoothed data using a Sgolay-Savitzky filter. Topography measurements were performed at probe-sample distances corresponding to the colored parts of the curve.
Fig. 5
Fig. 5 6x6 µm scan of a microfabribated structure, on the left side the grove and the right side the ridge (step in topography indicated). Top row the LDOS manipulation probe set at 240 nm, middle row probe set at 80 nm, bottom row probe set at 30 nm. First column: pixel lifetime, second probe distance, third column topography map.
Fig. 6
Fig. 6 Influence of reducing the number of counts per pixel on the topography images. Rows: LDOS manipulation probe set at 30, 80, and 240 nm distances from the fluorescently labeled surface. Columns: counts reduced to 10k, 5k and 1k per pixel. Colorbar units are nm.

Metrics