Abstract

We demonstrate a liquid crystal (LC)-based optical device with the polarization switching capability, which can store two different chiral images to be selected according to the polarization state of the viewing polarizer. The chiral dual-image device consists of chiral surface patterns for image storage and the LC layer as a tunable phase retarder. Each chiral surface pattern behaves as a helical photonic crystal that reflects circularly polarized light at a specific wavelength. Depending on the applied voltage across the LC layer, either a right-handed or a left-handed circular polarization image appears, and thus one of the two stored images can be selectively read by the polarization state. Our concept of the LC-based chiral image storage and selection provides simplicity in fabrication, flexibility in design, and high optical efficiency. It will be directly applicable for reflective-type 3D displays, color filters, and anti-counterfeiting devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption

Dong Xiao, Yan Jun Liu, Shengtao Yin, Jianxun Liu, Wei Ji, Bing Wang, Dan Luo, Guixin Li, and Xiao Wei Sun
Opt. Express 26(19) 25305-25314 (2018)

Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry

Yue Shi, Yan Jun Liu, Feng Song, Vladimir G. Chigrinov, Hoi-Sing Kwok, Minggang Hu, Dan Luo, and Xiao Wei Sun
Opt. Express 26(6) 7683-7692 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Li, J. W. Chon, S. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
    [Crossref] [PubMed]
  2. D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81(7), 1160–1162 (2002).
    [Crossref]
  3. H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
    [Crossref]
  4. A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
    [Crossref] [PubMed]
  5. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  6. W. Yue, S. S. Lee, and E. S. Kim, “Angle-tolerant polarization-tuned color filter exploiting a nanostructured cavity,” Opt. Express 24(15), 17115–17124 (2016).
    [Crossref] [PubMed]
  7. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  8. L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
    [Crossref] [PubMed]
  9. H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
    [Crossref] [PubMed]
  10. E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
    [Crossref]
  11. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
    [Crossref] [PubMed]
  12. C.-T. Lee, H.-Y. Lin, and C.-H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18(26), 27079–27094 (2010).
    [Crossref] [PubMed]
  13. W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
    [Crossref] [PubMed]
  14. H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
    [Crossref]
  15. H. Kang, S. Roh, I. Baik, H. Jung, W. Jeong, J. Shin, and I. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Symp. Digest Tech. Pap. 41, 1–4 (2010).
    [Crossref]
  16. K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20(7), 6927–6931 (2012).
    [Crossref] [PubMed]
  17. Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “Stereoscopic 3D display using patterned retarder,” SID Symp. Digest Tech. Pap. 39, 260–263 (2008).
    [Crossref]
  18. Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
    [Crossref] [PubMed]
  19. Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
    [Crossref] [PubMed]
  20. H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
    [Crossref]
  21. Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
    [Crossref]
  22. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [Crossref] [PubMed]
  23. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [Crossref]
  24. Y. C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
    [Crossref] [PubMed]
  25. Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
    [Crossref]
  26. A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
    [Crossref]
  27. M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
    [Crossref] [PubMed]
  28. J.-D. Lin, C.-L. Chu, H.-Y. Lin, B. You, C.-T. Horng, S.-Y. Huang, T.-S. Mo, C.-Y. Huang, and C.-R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5(6), 1419–1430 (2015).
    [Crossref]
  29. D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
    [Crossref] [PubMed]
  30. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  31. S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
    [Crossref]

2017 (2)

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

2016 (5)

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

W. Yue, S. S. Lee, and E. S. Kim, “Angle-tolerant polarization-tuned color filter exploiting a nanostructured cavity,” Opt. Express 24(15), 17115–17124 (2016).
[Crossref] [PubMed]

2015 (5)

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

Y. C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref] [PubMed]

J.-D. Lin, C.-L. Chu, H.-Y. Lin, B. You, C.-T. Horng, S.-Y. Huang, T.-S. Mo, C.-Y. Huang, and C.-R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5(6), 1419–1430 (2015).
[Crossref]

2014 (4)

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
[Crossref] [PubMed]

2012 (3)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20(7), 6927–6931 (2012).
[Crossref] [PubMed]

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

2011 (1)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

2007 (1)

2004 (1)

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

2002 (1)

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81(7), 1160–1162 (2002).
[Crossref]

2000 (1)

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

1972 (1)

Aussenegg, F. R.

Bae, K.-S.

Berreman, D. W.

Bunning, T. J.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Casari, D.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Cha, U.

Chen, Q.-W.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Chen, W. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Chiang, I. D.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Chon, J. W.

Chu, C.-L.

Clark, A. W.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Cui, Y.

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Ditlbacher, H.

Duempelmann, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Evans, R. A.

Gallinet, B.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Goh, X. M.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Gourevich, I.

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

X. Li, J. W. Chon, S. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
[Crossref] [PubMed]

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81(7), 1160–1162 (2002).
[Crossref]

Hegde, R. S.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Heo, J. W.

Heo, Y.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Heydari, E.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Hong, K.

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

Horng, C.-T.

Hsiao, Y. C.

Hsu, W. L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Hu, H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Hu, X.-Y.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Huang, C.-Y.

Huang, S.-Y.

Huang, Y. W.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Hurtubise, J. M.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Jeong, K. U.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Jonkman, J. E. N.

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

Kang, H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Kang, S. W.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Kim, D. Y.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Kim, E. S.

Kim, H.

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

Kim, J.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

Kim, J.-H.

Kim, S. H.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Kim, S.-U.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Kobashi, J.

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

Krenn, J. R.

Kriezis, E. E.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

Kumacheva, E.

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

Kumar, K.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Lamprecht, B.

Lee, B.

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

Lee, B.-Y.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Lee, C.-R.

Lee, C.-T.

Lee, H. K.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Lee, J. S.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Lee, K. M.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Lee, S. H.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Lee, S. S.

Lee, S. Y.

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

Lee, S.-D.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

Lee, W.

Lee, Y. H.

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

Lee, Y.-J.

Leitner, A.

Li, X.

Liao, C. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Lin, H. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Lin, H.-Y.

Lin, J.-D.

Ling, X. Y.

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Liu, A. Q.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

Luu-Dinh, A.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

McConney, M. E.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

McPhail, D.

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81(7), 1160–1162 (2002).
[Crossref]

Michaux, P.

Mitov, M.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

Mo, T.-S.

Mohri, Y.

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

Mohsin, A. S.

Moon, Y.-K.

Na, J.-H.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Nah, C.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Natarajan, L. V.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Neale, S. L.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Novotny, L.

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

Oh, J. K.

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

Oh, Y. K.

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Ozaki, M.

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

Pham, H. H.

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

Phang, I. Y.

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Qiu, C. W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Sperling, J. R.

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Suh, J.-H.

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Sun, G.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Sun, S.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Tan, S. J.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Tang, J.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Tasolamprou, A. C.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

Taylor, A. B.

Tondiglia, V. P.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Tsai, C.-H.

Tsai, D. P.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Wang, C. M.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

White, T. J.

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Wu, S.

Yang, J. K.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Yang, K. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Yeom, J.

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

Yoshida, H.

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

You, B.

Yu, C.-J.

Yue, W.

Yun, H.

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

Zhang, L.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zhang, Q.

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zhou, L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Zhou, X.-H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Zografopoulos, D. C.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

ACS Nano (2)

L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Color rendering plasmonic aluminum substrates with angular symmetry breaking,” ACS Nano 9(12), 12383–12391 (2015).
[Crossref] [PubMed]

D. Y. Kim, C. Nah, S. W. Kang, S. H. Lee, K. M. Lee, T. J. White, and K. U. Jeong, “Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures,” ACS Nano 10(10), 9570–9576 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

E. Heydari, J. R. Sperling, S. L. Neale, and A. W. Clark, “Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding,” Adv. Funct. Mater. 27(35), 1701866 (2017).
[Crossref]

Adv. Mater. (2)

H. H. Pham, I. Gourevich, J. K. Oh, J. E. N. Jonkman, and E. Kumacheva, “A multidye nanostructured material for optical data storage and security data encryption,” Adv. Mater. 16(6), 516–520 (2004).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Mohri, J. Kobashi, H. Yoshida, and M. Ozaki, “Morpho-butterfly-inspired patterning of helical photonic structures for circular-polarization-sensitive, wide-angle diffuse reflection,” Adv. Opt. Mater. 5(7), 1601071 (2017).
[Crossref]

Appl. Phys. Lett. (1)

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81(7), 1160–1162 (2002).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

J. Mater. Chem. (1)

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048–11053 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Liu, Y. H. Lee, Q. Zhang, Y. Cui, and X. Y. Ling, “Plasmonic nanopillar arrays encoded with multiplex molecular information for anti-counterfeiting applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4312–4319 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Liq. Cryst. (1)

S.-U. Kim, B.-Y. Lee, J.-H. Suh, J. Kim, J.-H. Na, and S.-D. Lee, “Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens,” Liq. Cryst. 44, 1 (2016).
[Crossref]

Nano Lett. (2)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Nanoscale (1)

Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale 6(1), 282–288 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

H. Yun, S. Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6(1), 7133 (2015).
[Crossref] [PubMed]

Nature (1)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Kim, J. Kim, J. Kim, B. Lee, and S.-D. Lee, “Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays,” Opt. Commun. 357, 52–57 (2015).
[Crossref]

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282(5), 903–907 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Small (1)

Y. Heo, H. Kang, J. S. Lee, Y. K. Oh, and S. H. Kim, “Lithographically Encrypted inverse opals for anti-counterfeiting applications,” Small 12(28), 3819–3826 (2016).
[Crossref] [PubMed]

Other (2)

Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “Stereoscopic 3D display using patterned retarder,” SID Symp. Digest Tech. Pap. 39, 260–263 (2008).
[Crossref]

H. Kang, S. Roh, I. Baik, H. Jung, W. Jeong, J. Shin, and I. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Symp. Digest Tech. Pap. 41, 1–4 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the device configuration showing our concept of the image section of chiral surface images by the polarization state: (a) the image selected by the RHC filter under an applied voltage and (b) the image selected by the LHC filter under no voltage.
Fig. 2
Fig. 2 Fabrication process of our LC-based chiral image device: (a) Preparation of a chiral surface layer through spin-coating the CRM mixture on a patterned ITO glass with a homogeneous alignment layer. (b) Photo-polymerization patterning upon the UV exposure through a photomask. (c) Removal process of the unpolymerized CRM region. (d) Assembling process of an empty cell with anti-parallel rubbed bottom and top substrates. (e) Injection of the LC into the cell by capillary action. Here, d denotes the total thickness of the cell and d2 is the thickness of the chiral pattern.
Fig. 3
Fig. 3 Simulation data and experimental results for the reflection spectra according to the applied voltage and the optical filter type. Reflection spectra under (a) no filter, (b) the RHC filter, and (c) the LHC filter. The insets in the figures show the microscopic images of our device depending on the applied voltage. Scale bars represent 500 μm.
Fig. 4
Fig. 4 The simulations and the experimental results for the EO reflectance as a function of the applied voltage. (a) The values of the Stokes parameter, S3, as a function of the applied voltage. (b) The simulation data under the RHC filter (red solid line), the experimental results under the RHC filter (red dashed line with dots), the simulation data under the LHC filter (yellow solid line), and the experiment results under the LHC filter (yellow dashed line with dots) as a function of voltage.
Fig. 5
Fig. 5 Microscopic images showing the pixel selection from two types of color (green and blue) pixels made of two different CRMs. The green pixel selection by the applied voltage and the optical filter in (a)-(c). The blue pixel selection by the applied voltage and the optical filter in (d)-(f). In all cases, the voltage was applied to the left pixels only. Reflection of (a) green color and (b) blue color under no filter, reflection of (b) green color and (d) blue color through the RHC filter, and reflection of (c) green color and (f) blue color through the LHC filter in the presence of the applied voltage of about 2V. Scale bars are 500 μm.
Fig. 6
Fig. 6 Microscopic images showing the optical switching capability in 2x2 array by the polarization state according to the applied voltage. The pixel selection under the RHC filter in (a)-(c) and under the LHC filter in (d)-(f). The voltage map in the array of 2x2 pixels was given in the top. Scale bars are 500 μm.
Fig. 7
Fig. 7 Image selection by the polarization state according to the applied voltage. (a) Microscopic images of ‘SNU’ and ‘MIPD’ stored in our LC device. The voltage was applied to the upper region where the characters of ‘SNU’ were patterned. (b) Under the applied voltage, the retrieval of only the image of ‘SNU’ through the RHC filter and (c) under no applied voltage, the retrieval of only the image of ‘MIPD’ through the LHC filter. Scale bars are 500 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ= 2π λ p Δn d 1

Metrics