Abstract

In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz pulse propagation in 3D-printed waveguide with metal wires component

Nurfina Yudasari, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 22(21) 26042-26054 (2014)

3D printed low-loss THz waveguide based on Kagome photonic crystal structure

Jing Yang, Jiayu Zhao, Cheng Gong, Haolin Tian, Lu Sun, Ping Chen, Lie Lin, and Weiwei Liu
Opt. Express 24(20) 22454-22460 (2016)

3D-printed polymer antiresonant waveguides for short-reach terahertz applications

L. D. van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti
Appl. Opt. 57(14) 3953-3958 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
    [Crossref] [PubMed]
  2. G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
    [Crossref] [PubMed]
  3. S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
    [Crossref]
  4. E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
    [Crossref] [PubMed]
  5. J. Cacciari and S. Siano, “Use of thz reflectometry for rouhness estimations of archeoloical metal surfaces,” J. Infrared Millim. Terahertz Waves 38(4), 503–517 (2017).
    [Crossref]
  6. Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
    [Crossref]
  7. A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3-D printed terahertz devices,” J. Infrared Millim. Terahertz Waves 39(7), 614 (2018).
    [Crossref]
  8. J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
    [Crossref]
  9. H. Xin and M. Liang, “3-D printed microwave and THz devices using polymer jetting techniques,” Proc. IEEE 105(4), 737–755 (2017).
    [Crossref]
  10. D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
    [Crossref]
  11. S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
    [Crossref]
  12. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3-D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref] [PubMed]
  13. P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
    [Crossref]
  14. A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
    [Crossref] [PubMed]
  15. M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
    [Crossref]
  16. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
    [Crossref]
  17. G. R. Fowles, Introduction to Modern Optics (Courier Corporation, 1989).
  18. K. Imakita, T. Kamada, M. Fujii, K. Aoki, M. Mizuhata, and S. Hayashi, “Terahertz wire grid polarizer fabricated by imprinting porous silicon,” Opt. Lett. 38(23), 5067–5070 (2013).
    [Crossref] [PubMed]
  19. C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
    [Crossref] [PubMed]
  20. M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
    [Crossref]
  21. A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
    [Crossref]
  22. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
    [Crossref] [PubMed]
  23. A. I. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, “Artificial dielectric stepped-refractive-index lens for the terahertz region,” Opt. Express 26(3), 3702–3708 (2018).
    [Crossref] [PubMed]
  24. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
    [Crossref] [PubMed]

2018 (8)

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3-D printed terahertz devices,” J. Infrared Millim. Terahertz Waves 39(7), 614 (2018).
[Crossref]

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

A. I. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, “Artificial dielectric stepped-refractive-index lens for the terahertz region,” Opt. Express 26(3), 3702–3708 (2018).
[Crossref] [PubMed]

2017 (6)

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3-D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref] [PubMed]

J. Cacciari and S. Siano, “Use of thz reflectometry for rouhness estimations of archeoloical metal surfaces,” J. Infrared Millim. Terahertz Waves 38(4), 503–517 (2017).
[Crossref]

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

H. Xin and M. Liang, “3-D printed microwave and THz devices using polymer jetting techniques,” Proc. IEEE 105(4), 737–755 (2017).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

2016 (1)

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

2013 (2)

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
[Crossref] [PubMed]

K. Imakita, T. Kamada, M. Fujii, K. Aoki, M. Mizuhata, and S. Hayashi, “Terahertz wire grid polarizer fabricated by imprinting porous silicon,” Opt. Lett. 38(23), 5067–5070 (2013).
[Crossref] [PubMed]

2012 (1)

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

2010 (2)

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[Crossref] [PubMed]

2009 (1)

2001 (1)

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
[Crossref]

1999 (1)

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Abe, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Akiyama, K.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Alberti, S.

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Alfaro-Gomez, M.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Al-Naib, I.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Ansermet, J.-P.

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Aoki, K.

Appadoo, D.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Balcytis, A.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Balzer, J. C.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Beigang, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Beltran-Mejia, F.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

Bomba, J.

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

Born, N.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Busch, S. F.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

Cacciari, J.

J. Cacciari and S. Siano, “Use of thz reflectometry for rouhness estimations of archeoloical metal surfaces,” J. Infrared Millim. Terahertz Waves 38(4), 503–517 (2017).
[Crossref]

Cao, J.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Castillo-Guzman, A. R.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Castro-Camus, E.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

A. I. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, “Artificial dielectric stepped-refractive-index lens for the terahertz region,” Opt. Express 26(3), 3702–3708 (2018).
[Crossref] [PubMed]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
[Crossref] [PubMed]

Chen, X.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Covarrubias, A. A.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
[Crossref] [PubMed]

de Rijk, E.

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Drauschke, A.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
[Crossref]

Eckstein, R.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Failla, M.

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

Flowers, P. F.

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Fujii, M.

Goodman, T.

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Guerboukha, H.

Hangyo, M.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Hart, W.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Hayashi, S.

He, Y.

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

Hernandez-Cardoso, G. G.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Hernandez-Serrano, A. I.

A. I. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, “Artificial dielectric stepped-refractive-index lens for the terahertz region,” Opt. Express 26(3), 3702–3708 (2018).
[Crossref] [PubMed]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Hernandez-Sosa, G.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Honkanen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Hsieh, C.-F.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Imakita, K.

Ivanova, E. P.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Jahn, D.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Jonuscheit, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Jördens, C.

Juodkazis, S.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Kamada, T.

Kawabata, T.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Kettunen, V.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Kim, M. J.

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Klier, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Koch, M.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[Crossref] [PubMed]

Krimi, S.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Kuittinen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Lautanen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Lemmer, U.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Lemus-Bedolla, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Lewis, R.

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3-D printed terahertz devices,” J. Infrared Millim. Terahertz Waves 39(7), 614 (2018).
[Crossref]

Li, J.

Liang, M.

H. Xin and M. Liang, “3-D printed microwave and THz devices using polymer jetting techniques,” Proc. IEEE 105(4), 737–755 (2017).
[Crossref]

Linklater, D.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Liu, X.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Lloyd-Hughes, J.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

Lopez-Lemus, H. L.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Macor, A.

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Makowski, M.

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

Malinauskas, M.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Mendis, R.

Mittleman, D. M.

Miyamaru, F.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Mizuhata, M.

Morikawa, J.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Mosley, C. D. W.

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

Nallappan, K.

Palomar, M.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
[Crossref] [PubMed]

Pan, C.-L.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Pan, R.-P.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Parrott, E. P.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Parrott, E. P. J.

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Prabhakaran, D.

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

Reichel, K. S.

Reyes, C.

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Rojas-Landeros, S. C.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Ryu, M.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Salas-Gutierrez, I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

Scheller, M.

Schnabel, B.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
[Crossref]

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Schneider, L. M.

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Siano, S.

J. Cacciari and S. Siano, “Use of thz reflectometry for rouhness estimations of archeoloical metal surfaces,” J. Infrared Millim. Terahertz Waves 38(4), 503–517 (2017).
[Crossref]

Skliutas, E.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Skorobogatiy, M.

Sobczyk, A.

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

Squires, A.

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3-D printed terahertz devices,” J. Infrared Millim. Terahertz Waves 39(7), 614 (2018).
[Crossref]

Stantchev, R. I.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Sun, Q.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

Suszek, J.

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

Sypek, M.

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

Takano, K.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Tan, Y.-R. E.

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

Tokuda, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Turunen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Urbansky, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

von Freymann, G.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Wiley, B. J.

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Wyrowski, F.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
[Crossref]

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Xin, H.

H. Xin and M. Liang, “3-D printed microwave and THz devices using polymer jetting techniques,” Proc. IEEE 105(4), 737–755 (2017).
[Crossref]

Ye, S.

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Zhang, W.

Zhao, N.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Zhou, Y.

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Additive Manufacturing (1)

P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3-D printing electronic components and circuits with conductive thermoplastic filament,” Additive Manufacturing 18, 156–163 (2017).
[Crossref]

Advanced Materials Technologies (1)

D. Jahn, R. Eckstein, L. M. Schneider, N. Born, G. Hernandez-Sosa, J. C. Balzer, I. Al-Naib, U. Lemmer, and M. Koch, “Digital aerosol jet printing for the fabrication of terahertz metamaterials,” Advanced Materials Technologies 3(2), 1700236 (2018).
[Crossref]

Appl. Phys. B (1)

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B 68(1), 81–85 (1999).
[Crossref]

Appl. Phys. Express (1)

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Appl. Phys. Lett. (1)

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

J. Biophotonics (1)

Q. Sun, E. P. J. Parrott, Y. He, and E. Pickwell-MacPherson, “In vivo thz imaging of human skin: Accounting for occlusion effects,” J. Biophotonics 11(2), e201700111 (2018).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (4)

J. Cacciari and S. Siano, “Use of thz reflectometry for rouhness estimations of archeoloical metal surfaces,” J. Infrared Millim. Terahertz Waves 38(4), 503–517 (2017).
[Crossref]

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3-D printed terahertz devices,” J. Infrared Millim. Terahertz Waves 39(7), 614 (2018).
[Crossref]

J. Bomba, J. Suszek, M. Makowski, A. Sobczyk, and M. Sypek, “3-d printed anti-reflection structures for the terahertz region,” J. Infrared Millim. Terahertz Waves 39(1), 24–35 (2018).
[Crossref]

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, “3d printed prisms with tunable dispersion for the thz frequency range,” J. Infrared Millim. Terahertz Waves 39(6), 553–560 (2018).
[Crossref]

J. Opt. (1)

M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikawa, and S. Juodkazis, “3-D printed polarizing grids for IR-THz synchrotron radiation,” J. Opt. 20(3), 035101 (2018).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A, Pure Appl. Opt. 3(1), 67–71 (2001).
[Crossref]

J. Phys. Chem. C (1)

Q. Sun, X. Liu, J. Cao, R. I. Stantchev, Y. Zhou, X. Chen, E. P. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson, “Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide preovskites,” J. Phys. Chem. C 122, 17552–17558 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

H. Xin and M. Liang, “3-D printed microwave and THz devices using polymer jetting techniques,” Proc. IEEE 105(4), 737–755 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Rev. Sci. Instrum. 83(4), 046103 (2012).
[Crossref] [PubMed]

Sci. Rep. (3)

C. D. W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, “Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization,” Sci. Rep. 7(1), 12337 (2017).
[Crossref] [PubMed]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref] [PubMed]

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3(1), 2910 (2013).
[Crossref] [PubMed]

Other (1)

G. R. Fowles, Introduction to Modern Optics (Courier Corporation, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Diagram of the proposed polarizer; (b) Photograph of the printed devices; (c) and (d) show the refractive index and absorption coefficient of CPLA, respectively.
Fig. 2
Fig. 2 Numerical simulations for a 4 mm propagation length polarizer. (a) and (b) show the simulation for the TE and TM components of the THz beam at 0.3 THz, respectively; (c) and (d) show the simulation of the TE and TM components at 2.5 THz, respectively. The incoming beam goes from top to bottom. The darkest areas indicate the presence of CPLA, and light green areas indicate air.
Fig. 3
Fig. 3 (a) Spectral content of the THz beam recorded after passing through the 4 mm polarizer and (b) transmission amplitude. The signals were recorded from the case of polarization direction parallel to the strip lines (TE component) to the case of polarization direction perpendicular to the lines (TM component) in steps of 10°. The dashed lines in (b) represent the numerical prediction of the transmission for the TE and TM components.
Fig. 4
Fig. 4 (a) Cutoff frequency as function of CPLA strip lines separation for the 4 mm thickness. The continuous line is the theoretical cutoff frequency. (b) Extinction ratio of the different polarizers. The dashed line is the predicted Rayleigh wavelength [21]. (c) Transmission of the TE component through the five polarizers.
Fig. 5
Fig. 5 Time-Frequency distribution of the signal recorder by the receiver for the 5 mm thick polarizer. (a) and (b) show the time-frequency distribution for the TE and TM components respectively. The white dashed circle indicates the remnants of the high frequencies. (c) shows the time-frequency distribution of a reference pulse, that is, without polarizer. The image was scaled 0.4 times. (d) a typical THz pulse waveform after the 5 mm thick polarizer. In this figure, a clear separation between high frequencies and low frequencies is observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f c = c 2 h

Metrics