Abstract

In this paper, a holographic display method to suppress the speckle noise is proposed. Firstly, the effective viewing area (EVA) of the reconstructed image is calculated. The object points are separated into groups by pixel separation. Then, the sub-computer-generated holograms (sub-CGHs) which can be reconstructed in the EVA are generated by calculating the principal fringe patterns. Finally, by loading the sub-CGHs on the two spatial light modulators respectively and using spatiotemporal multiplexing method, the reconstructed image can be displayed with lower speckle noise. Moreover, the calculation speed of the hologram is improved. Experimental results demonstrate the feasibility of the proposed method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm

Chenliang Chang, Jun Xia, Lei Yang, Wei Lei, Zhiming Yang, and Jianhong Chen
Appl. Opt. 54(23) 6994-7001 (2015)

Effective information processing method to produce a computer-generated hologram based on a spatial light modulator

Su-Juan Liu, Di Wang, Song-Jie Li, and Qiong-Hua Wang
Appl. Opt. 55(32) 9250-9254 (2016)

Speckleless holographic display by complex modulation based on double-phase method

Yijun Qi, Chenliang Chang, and Jun Xia
Opt. Express 24(26) 30368-30378 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Piao, M. U. Erdenebat, K. C. Kwon, S. K. Gil, and N. Kim, “Chromatic-dispersion-corrected full-color holographic display using directional-view image scaling method,” Appl. Opt. 58(5), A120–A127 (2019).
    [Crossref] [PubMed]
  2. S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233–20247 (2018).
    [Crossref] [PubMed]
  3. Y. Zhao, L. C. Cao, H. Zhang, W. Tan, S. H. Wu, Z. Wang, Q. Yang, and G. F. Jin, “Time-division multiplexing holographic display using angular-spectrum layer-oriented method,” Chin. Opt. Lett. 14(1), 010005 (2016).
    [Crossref]
  4. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  5. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54(23), 6994–7001 (2015).
    [Crossref] [PubMed]
  6. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 10- mum pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light,” Opt. Lett. 27(16), 1406–1408 (2002).
    [Crossref] [PubMed]
  7. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
    [Crossref] [PubMed]
  8. T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22(14), 17193–17206 (2014).
    [Crossref] [PubMed]
  9. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
    [Crossref]
  10. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37(10), 1770–1775 (1998).
    [Crossref] [PubMed]
  11. S. J. Liu, D. Wang, S. J. Li, and Q. H. Wang, “Speckle noise suppression method in holographic display using time multiplexing,” Opt. Eng. 56(6), 063107 (2017).
    [Crossref]
  12. V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
    [Crossref] [PubMed]
  13. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  14. Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
    [Crossref] [PubMed]
  15. C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
    [Crossref] [PubMed]
  16. P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
    [Crossref] [PubMed]
  17. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  18. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref] [PubMed]
  19. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
    [Crossref] [PubMed]
  20. Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
    [Crossref] [PubMed]
  21. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  22. S. C. Kim and E. S. Kim, “Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns,” Opt. Express 22(19), 22513–22527 (2014).
    [Crossref] [PubMed]
  23. D. Wang, C. Liu, and Q. H. Wang, “Method of chromatic aberration elimination in holographic display based on zoomable liquid lens,” Opt. Express 27(7), 10058–10066 (2019).
    [Crossref]

2019 (2)

2018 (4)

2017 (2)

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref] [PubMed]

S. J. Liu, D. Wang, S. J. Li, and Q. H. Wang, “Speckle noise suppression method in holographic display using time multiplexing,” Opt. Eng. 56(6), 063107 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (3)

2013 (1)

2012 (1)

2011 (2)

2008 (1)

2005 (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

2002 (1)

1998 (1)

Bianco, V.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Cao, L. C.

Chang, C.

Chang, S.

Chen, J.

Choi, K.

Choi, Y.

Distante, C.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Erdenebat, M. U.

Ferraro, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Fukuoka, T.

Gil, S. K.

Godo, H.

Goodman, J. W.

Halldórsson, T.

Heo, J.

Horiuchi, M.

Hwang, H.

Ito, T.

Javidi, B.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Jin, G. F.

Kang, B.

Kang, D.

Kim, E. S.

Kim, N.

Kim, S. C.

Kim, Y. K.

Kolodziejczyk, A.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Kwon, K. C.

Lee, J.

Lee, J. S.

Lee, S.

Lei, W.

Leo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Li, L.

Li, S. J.

S. J. Liu, D. Wang, S. J. Li, and Q. H. Wang, “Speckle noise suppression method in holographic display using time multiplexing,” Opt. Eng. 56(6), 063107 (2017).
[Crossref]

Liu, C.

Liu, S.

Liu, S. J.

S. J. Liu, D. Wang, S. J. Li, and Q. H. Wang, “Speckle noise suppression method in holographic display using time multiplexing,” Opt. Eng. 56(6), 063107 (2017).
[Crossref]

Makowski, M.

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
[Crossref] [PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Manni, J. G.

Masuda, N.

Memmolo, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Montresor, S.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Mori, Y.

Nakayama, H.

Nam, D.

Nie, S.

Nomura, T.

Oikawa, M.

Park, J.

Paturzo, M.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Pétursson, P. R.

Piao, Y. L.

Picart, P.

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Qi, Y.

Shimobaba, T.

Shiraki, A.

Sun, P.

Sypek, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Takaki, Y.

Tan, W.

Tao, X.

Tschudi, T.

Utsugi, T.

Wang, C.

Wang, D.

Wang, L.

Wang, Q. H.

Wang, Z.

Won, Y. H.

Wu, J.

Wu, S. H.

Xia, J.

Yamaguchi, M.

Yang, L.

Yang, Q.

Yang, Z.

Yoda, T.

Yokouchi, M.

Zhang, H.

Zhao, Y.

Zheng, Z.

Zhou, X.

Appl. Opt. (5)

Chin. Opt. Lett. (1)

Light Sci. Appl. (1)

V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro, “Strategies for reducing speckle noise in digital holography,” Light Sci. Appl. 7(1), 48 (2018).
[Crossref] [PubMed]

Opt. Eng. (2)

S. J. Liu, D. Wang, S. J. Li, and Q. H. Wang, “Speckle noise suppression method in holographic display using time multiplexing,” Opt. Eng. 56(6), 063107 (2017).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[Crossref]

Opt. Express (13)

S. C. Kim and E. S. Kim, “Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns,” Opt. Express 22(19), 22513–22527 (2014).
[Crossref] [PubMed]

D. Wang, C. Liu, and Q. H. Wang, “Method of chromatic aberration elimination in holographic display based on zoomable liquid lens,” Opt. Express 27(7), 10058–10066 (2019).
[Crossref]

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
[Crossref] [PubMed]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref] [PubMed]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
[Crossref] [PubMed]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233–20247 (2018).
[Crossref] [PubMed]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[Crossref] [PubMed]

T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22(14), 17193–17206 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the proposed method.
Fig. 2
Fig. 2 Connection between the object, the SLM and the reconstructed image. (a) Holographic recording and reconstruction process; (b) analysis of the EVA.
Fig. 3
Fig. 3 Structure of the reconstructed system.
Fig. 4
Fig. 4 Reconstructed images by using (a) the proposed method and (b) the conventional NLUT method.
Fig. 5
Fig. 5 Reconstructed images of the letters “AC” by using (a) the proposed method and (b) the conventional NLUT method.
Figure 6
Figure 6 Reconstructed images of the 3D object. (a) Result of the proposed method when “B” is focused; (b) result of the proposed method when “H” is focused; (c) result with the conventional NLUT method when “B” is focused; (d) result with the conventional NLUT method when “H” is focused.
Fig. 7
Fig. 7 Relationship between the calculation time of sub-CGHs and the object points.
Fig. 8
Fig. 8 Results of simulation experiment based on GS algorithm. (a) Reconstructed image of the letters without using the proposed method; (b) reconstructed image of the car without using the proposed method; (c) reconstructed image of the letters by using the proposed method; (d) reconstructed image of the car by using the proposed method.
Fig. 9
Fig. 9 Intensity of the reconstructed images. (a) Intensity of Fig. 8 (a); (b) intensity of Fig. 8 (c).
Fig. 10
Fig. 10 Result of the reconstructed image when p changes. (a) Result by using the traditional NLUT method; (b) result by using the proposed method when p = 2; (c) result by using the proposed method when p = 3.

Tables (1)

Tables Icon

Table 1 Speckle contrast and calculation time of the reconstructed images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β sin 1 (λ/2d),
βtanβ= H/2+L/2 Z λ 2d ,
L λZ d H.
Du=Da+DbD= [H(RZ)LR] Z .
C= σ I p 2 ,

Metrics