Abstract

Video holography has attracted attention after its invention in 1947; however, the enormous amount of data involved in recording and transmitting three-dimensional (3D) images remains a serious issue in electro-holography. Majority of the studies that have investigated holography transmission target the system that transmits the 3D images by compressing the holograms created on the distributor side using various compression techniques such as the conventional video compression techniques. However, the importance of the information in frequency space and characteristics, such as the correlation between adjacent pixels and frames, is different in natural images and holograms; therefore, these approaches are not always effective. In this study, we propose an effective electro-holography compression scheme based on the vector quantization of point light sources (PLSs). Instead of directly compressing a hologram, our method compresses and transmits PLSs from the distributor side and generates a hologram on the receiver side. To reduce the computational load that is required for creating a computer-generated hologram (CGH) on the receiver side, a fast CGH calculation technique has been developed for the vector-quantized PLS data based on the lookup tables (LUTs). This reduces the data rate by 76% when compared to that observed in case of uncompressed CGH transmission with 2K resolution and results in a calculation speed that is 1.34 times faster than that obtained using the conventional LUT method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques

Seung-Cheol Kim, Jung-Hoon Yoon, and Eun-Soo Kim
Appl. Opt. 47(32) 5986-5995 (2008)

Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table

Seung-Cheol Kim, Xiao-Bin Dong, Min-Woo Kwon, and Eun-Soo Kim
Opt. Express 21(9) 11568-11584 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
    [Crossref]
  2. J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
    [Crossref]
  3. Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
    [Crossref]
  4. E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45, 2437–2443 (2006).
    [Crossref] [PubMed]
  5. D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
    [Crossref]
  6. Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Vector quantization for computer generated phase-shifting holograms,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, (IEEE, 2013), pp. 709–713.
  7. P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color fresnel holography with compression ratio of over 1600 times using vector quantization,” Appl. Opt. 50, H42–H49 (2011).
    [Crossref] [PubMed]
  8. M. P. Marco, V. Bernardo, and António M. G. Pinheiro, “Benchmarking coding standards for digital holography represented on the object plane,” Proc. SPIE 10679, 106790K (2018).
  9. D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26, 25524–25533 (2018).
    [Crossref] [PubMed]
  10. V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
    [Crossref]
  11. T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
    [Crossref]
  12. J. W. Goodman, Introduction to Fourier Optics Third Edition (Roberts and Company Publishers, 2004).
  13. Facebook, “Zstandard – Real-time data compression algorithm,” https://facebook.github.io/zstd/ .
  14. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
    [Crossref] [PubMed]
  15. T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26, 16063–16073 (2018).
    [Crossref] [PubMed]
  16. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
    [Crossref] [PubMed]
  17. S.-C. Kim, J.-H. Kim, and E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50, 3375–3382 (2011).
    [Crossref] [PubMed]
  18. M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
    [Crossref]
  19. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
    [Crossref]
  20. T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express 20, 27496–27502 (2012).
    [Crossref] [PubMed]
  21. S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
    [Crossref] [PubMed]
  22. FFmpeg, “FFmpeg website,” https://www.ffmpeg.org/ .
  23. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
    [Crossref]
  24. R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.
  25. T. Nishitsuji, Y. Yamamoto, T. Sugie, T. Akamatsu, R. Hirayama, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Special-purpose computer HORN-8 for phase-type electro-holography,” Opt. Express 26, 26722–26733 (2018).
    [Crossref] [PubMed]

2019 (1)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

2018 (5)

2015 (2)

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref] [PubMed]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
[Crossref] [PubMed]

2014 (2)

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

2013 (2)

V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
[Crossref]

Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

2012 (2)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express 20, 27496–27502 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (1)

2008 (1)

2006 (1)

1993 (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

Abelem, A.

R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.

Ahar, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Akamatsu, T.

Ascenso, J.

J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
[Crossref]

Bernardo, V.

M. P. Marco, V. Bernardo, and António M. G. Pinheiro, “Benchmarking coding standards for digital holography represented on the object plane,” Proc. SPIE 10679, 106790K (2018).

Bettens, S.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Birnbaum, T.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Blinder, D.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26, 25524–25533 (2018).
[Crossref] [PubMed]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Brites, C.

J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
[Crossref]

Bruylants, T.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Cerqueira, E.

R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.

Cheung, K. W. K.

Chong, T.-C.

Darakis, E.

Dong, X.-B.

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref] [PubMed]

Dufaux, F.

Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Vector quantization for computer generated phase-shifting holograms,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, (IEEE, 2013), pp. 709–713.

Gao, Q.

Gioia, P.

V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
[Crossref]

Gomes, R.

R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics Third Edition (Roberts and Company Publishers, 2004).

Han, Y.

He, P.

Hirayama, R.

Ichihashi, Y.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Ito, T.

Junior, W.

R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.

Kakue, T.

Kartik, V.

V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
[Crossref]

Kim, E.-S.

Kim, J.-H.

Kim, S.-C.

Liang, X.

Liu, J.

Lucente, M. E.

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

Marco, M. P.

M. P. Marco, V. Bernardo, and António M. G. Pinheiro, “Benchmarking coding standards for digital holography represented on the object plane,” Proc. SPIE 10679, 106790K (2018).

Masuda, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express 20, 27496–27502 (2012).
[Crossref] [PubMed]

Morin, L.

V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
[Crossref]

Munteanu, A.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Nakayama, H.

Nishitsuji, T.

Oi, R.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Okada, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Ottevaere, H.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Pan, Y.

Peixeiro, J. P.

J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
[Crossref]

Pereira, F.

J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
[Crossref]

Pesquet-Popescu, B.

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Vector quantization for computer generated phase-shifting holograms,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, (IEEE, 2013), pp. 709–713.

Pinheiro, António M. G.

M. P. Marco, V. Bernardo, and António M. G. Pinheiro, “Benchmarking coding standards for digital holography represented on the object plane,” Proc. SPIE 10679, 106790K (2018).

Poon, T.-C.

Popescu, B. P.

Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Sakurai, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Sasaki, H.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Schelkens, P.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26, 25524–25533 (2018).
[Crossref] [PubMed]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Schretter, C.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26, 25524–25533 (2018).
[Crossref] [PubMed]

Senoh, T.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Shimobaba, T.

Shiraki, A.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Solanki, S.

Soraghan, J. J.

Sugie, T.

Symeonidou, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Takada, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Tan, C.

Tanjung, R. B. A.

Tsang, P.

Wakunami, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Wang, Y.

Weng, J.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Xing, Y.

Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Vector quantization for computer generated phase-shifting holograms,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, (IEEE, 2013), pp. 709–713.

Xu, X.

Yamamoto, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

Yamamoto, Y.

Zhao, T.

Appl. Opt. (4)

Comput. Phys. Commun. (1)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

IEEE Trans. Multimed. (1)

J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, “Holographic data coding: Benchmarking and extending hevc with adapted transforms,” IEEE Trans. Multimed. 20, 282–297 (2018).
[Crossref]

J. Electron. Imaging (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

Opt. Eng. (2)

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53, 112302 (2014).
[Crossref]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53, 123102 (2014).
[Crossref]

Opt. Express (6)

Proc. SPIE (3)

V. Kartik, P. Gioia, and L. Morin, “Wavelet compression of digital holograms: Towards a view-dependent framework,” Proc. SPIE 8856, 88561N (2013).
[Crossref]

M. P. Marco, V. Bernardo, and António M. G. Pinheiro, “Benchmarking coding standards for digital holography represented on the object plane,” Proc. SPIE 10679, 106790K (2018).

Y. Xing, B. P. Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Sci. Rep. (1)

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref] [PubMed]

Signal Process. Image Commun. (1)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Other (5)

R. Gomes, W. Junior, E. Cerqueira, and A. Abelem, “A QoE fuzzy routing protocol for wireless mesh networks,” in Future Multimedia Networking, (SpringerBerlin Heidelberg, 2010), pp. 1–12.

FFmpeg, “FFmpeg website,” https://www.ffmpeg.org/ .

J. W. Goodman, Introduction to Fourier Optics Third Edition (Roberts and Company Publishers, 2004).

Facebook, “Zstandard – Real-time data compression algorithm,” https://facebook.github.io/zstd/ .

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Vector quantization for computer generated phase-shifting holograms,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, (IEEE, 2013), pp. 709–713.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Comparison of the two types of electro-holography transmission systems.
Fig. 2
Fig. 2 Block diagram of the encoding scheme of the proposed method.
Fig. 3
Fig. 3 Block diagram of the decoding scheme of the proposed method.
Fig. 4
Fig. 4 Flowchart for determining the bit string.
Fig. 5
Fig. 5 Overview of the creation of a lookup table.
Fig. 6
Fig. 6 Three-dimensional models: (a) fountain and (b) merry-go-round.
Fig. 7
Fig. 7 Data-rate savings: (a) fountain and (b) merry-go-round.
Fig. 8
Fig. 8 Comparison of the histograms of the number of “1” bits in the bit string (L = 4 and N = 90,000).
Fig. 9
Fig. 9 Examples of the numerically reconstructed images.
Fig. 10
Fig. 10 Average peak signal-to-noise ratio (PSNR): (a) fountain and (b) merry-go-round.
Fig. 11
Fig. 11 Calculation time of the encoder: (a) fountain and (b) merry-go-round.
Fig. 12
Fig. 12 The computer-generated hologram (CGH) calculation times using the VQ-LUT method: (a) fountain and (b) merry-go-round.
Fig. 13
Fig. 13 The decoder calculation times: (a) fountain and (b) merry-go-round.

Tables (1)

Tables Icon

Table 1 Example of the encoding scheme.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x α , y α ) = j = 0 N 1 A j exp  [ i 2 π p λ { ( x α x j ) 2 + ( y α y j ) 2 + z j 2 } 1 2 ] ,
k = z j / L
V = Z L × 2 L × R max × C ,
R max = z max × tan  { sin 1 ( λ 2 p ) } ,
DRS = 1 Compresseddatarate ( CDR ) Uncompresseddatarate ( UDR ) .

Metrics