Abstract

Diffraction beams generated by an acousto-optic modulator (AOM) are widely used in various optical experiments, some of which require high angular stability with the temporal modulation of optical power. Usually, it is difficult to realize both angular stability and high-power modulation in a passive setup without a servo system of radio-frequency compensation. Here, we present a method to suppress the angular drift and pointing noise only with the thermal management of the AOM crystal. We analyze the dependence of the angular drift on the refractive index variation and find that the angular drift is very sensitive to the temperature gradient, which could induce the refractive index gradient inside the AOM crystal. It reminds us that such angular drift could be significantly suppressed by carefully overlapping the zero temperature gradient area with the position of the acousto-optic interaction zone. We implement a water-cooling setup and find that the angular drift of an AOM is reduced over 100 times during the thermal transient and the angular noise is also suppressed to one-third of the non-cooled case. It should be emphasized that this thermal control method generally used to suppress the beam drift in both the diffraction and the perpendicular-to-diffraction directions. The refractive index thermal coefficient of tellurium dioxide crystal at 1064 nm determined by this angular drift-temperature model is 16×10 6 K 1, consistent with previous studies. This thermal control technique provides potential applications for optical trapping and remote sensoring that demand for intensity ramps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-insensitive laser frequency stabilization to molecular absorption edge using an acousto-optic modulator

Lin Xin, Cheng Xuewu, Li Faquan, Yang Yong, Wu Kuijun, Li Yajuan, Xia Yuan, and Gong Shunsheng
Opt. Lett. 39(15) 4416-4419 (2014)

Randomizing phase to remove acousto-optic device wiggle errors for high-resolution optical tweezers

Andrew G. Baker, Cho-Ying Chuang, Miles Whitmore, and Matthew J. Comstock
Appl. Opt. 57(8) 1752-1756 (2018)

Multiplexing acousto-optic modulators to steer polychromatic laser beams

Thomas W. Jarvis
J. Opt. Soc. Am. B 32(1) 83-91 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, “I. acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2–21 (1976).
    [Crossref]
  2. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
    [Crossref]
  3. J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
    [Crossref]
  4. L. Luo, “Entropy and superfluid critical parameters of a strongly interacting fermi gas,” Ph.D. thesis, Duke University (2008).
  5. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
    [Crossref] [PubMed]
  6. J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
    [Crossref]
  7. B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
    [Crossref] [PubMed]
  8. A. Piggot, “Angular drift of crystaltech 3080–197 aoms due to thermal transients,” Ph.D. thesis, University of Toronto (2010).
  9. W. R. Mcgehee, “Transport and disorder-induced localization of unltracold fermi gases,” Ph.D. thesis, University of Illinois at Urbana-Champaign (2015).
  10. V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
    [Crossref]
  11. We measured three AOMs, such as IntraAction model ATM-804DA6B, Isomet model M1306–T80L-4 and model M1135–T80L-3. All of their diffraction beams become elliptical when the high driving power reaches half of the maximum diffraction efficient.
  12. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [Crossref] [PubMed]
  13. F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of heat and mass transfer(John WileySons, 2007).
  14. N. Uchida, “Optical properties of single-crystal paratellurite (teo2),” Phys. Rev. B 4, 3736–3745 (1971).
    [Crossref]
  15. H. Li, J. Lousteau, W. N. MacPherson, X. Jiang, H. T. Bookey, J. S. Barton, A. Jha, and A. K. Kar, “Thermal sensitivity of tellurite and germanate optical fibers,” Opt. Express 15, 8857–8863 (2007).
    [Crossref] [PubMed]
  16. A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
    [Crossref] [PubMed]
  17. S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
    [Crossref]
  18. K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
    [Crossref]

2016 (1)

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

2015 (1)

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

2013 (1)

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

2007 (2)

H. Li, J. Lousteau, W. N. MacPherson, X. Jiang, H. T. Bookey, J. S. Barton, A. Jha, and A. K. Kar, “Thermal sensitivity of tellurite and germanate optical fibers,” Opt. Express 15, 8857–8863 (2007).
[Crossref] [PubMed]

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

2006 (1)

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

2001 (1)

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

2000 (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

1996 (1)

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

1995 (1)

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

1982 (1)

1976 (1)

I. C. Chang, “I. acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2–21 (1976).
[Crossref]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (teo2),” Phys. Rev. B 4, 3736–3745 (1971).
[Crossref]

Adams, C. S.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

Balakshy, V. I.

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Barton, J. S.

Bergman, T. L.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of heat and mass transfer(John WileySons, 2007).

Blatt, S.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Bookey, H. T.

Brouzos, I.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Chang, I. C.

I. C. Chang, “I. acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2–21 (1976).
[Crossref]

Chiu, C. S.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Chu, S.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

Davidson, N.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

de Melo, L.

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

Dewitt, D. P.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of heat and mass transfer(John WileySons, 2007).

Fattori, M.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Fröhlich, B.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Gehm, M. E.

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

Granade, S. R.

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

Greiner, M.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Grimm, R.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Huber, F.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Incropera, F. P.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of heat and mass transfer(John WileySons, 2007).

Izumi, Y.

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

Jha, A.

Jiang, X.

Jochim, S.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Kaltenhäuser, B.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Kar, A. K.

Karasev, V. A.

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Kasevich, M.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

Knight, L. V.

Kobayashi, J.

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

Koch, T.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Kübler, H.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Kumakura, M.

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

Lahaye, T.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Lee, H. J.

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

Li, H.

Li, J.

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

Liu, J.

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

Lompe, T.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Lousteau, J.

Luo, L.

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

L. Luo, “Entropy and superfluid critical parameters of a strongly interacting fermi gas,” Ph.D. thesis, Duke University (2008).

MacPherson, W. N.

Mazurenko, A.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Mcgehee, W. R.

W. R. Mcgehee, “Transport and disorder-induced localization of unltracold fermi gases,” Ph.D. thesis, University of Illinois at Urbana-Champaign (2015).

Molchanov, V. Y.

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Müller, S.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Murmann, S.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

O’Hara, K. M.

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Parsons, M. F.

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

Pfau, T.

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Piggot, A.

A. Piggot, “Angular drift of crystaltech 3080–197 aoms due to thermal transients,” Ph.D. thesis, University of Toronto (2010).

Semenkov, V.

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Sheldon, S. J.

Takahashi, Y.

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

Thomas, J. E.

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

Thorne, J. M.

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (teo2),” Phys. Rev. B 4, 3736–3745 (1971).
[Crossref]

Voloshinov, V. B.

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Wenz, A. N.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Xu, W.

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

Zürn, G.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Adv. In At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. In At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

App. Phys. B (1)

J. Kobayashi, Y. Izumi, M. Kumakura, and Y. Takahashi, “Stable all–optical formation of bose–einstein condensate using pointing–stabilized optical trapping beams,” App. Phys. B 83, 21–25 (2006).
[Crossref]

Appl. Opt. (1)

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “I. acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2–21 (1976).
[Crossref]

Opt. Express (1)

Phys. Rev. A (3)

S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber, and M. Greiner, “Low-noise optical lattices for ultracold  6Li,” Phys. Rev. A 92, 021402 (2015).
[Crossref]

K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Scaling laws for evaporative cooling in time-dependent optical traps,” Phys. Rev. A 64, 051403 (2001).
[Crossref]

J. Li, J. Liu, W. Xu, L. de Melo, and L. Luo, “Parametric cooling of a degenerate fermi gas in an optical trap,” Phys. Rev. A 93, 041401 (2016).
[Crossref]

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (teo2),” Phys. Rev. B 4, 3736–3745 (1971).
[Crossref]

Phys. Rev. Lett. (1)

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Y. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori, and T. Pfau, “Two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps,” Rev. Sci. Instrum. 78, 043101 (2007).
[Crossref] [PubMed]

Science (1)

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, “From few to many: Observing the formation of a fermi sea one atom at a time,” Science 342, 457–460 (2013).
[Crossref] [PubMed]

Other (5)

We measured three AOMs, such as IntraAction model ATM-804DA6B, Isomet model M1306–T80L-4 and model M1135–T80L-3. All of their diffraction beams become elliptical when the high driving power reaches half of the maximum diffraction efficient.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of heat and mass transfer(John WileySons, 2007).

A. Piggot, “Angular drift of crystaltech 3080–197 aoms due to thermal transients,” Ph.D. thesis, University of Toronto (2010).

W. R. Mcgehee, “Transport and disorder-induced localization of unltracold fermi gases,” Ph.D. thesis, University of Illinois at Urbana-Champaign (2015).

L. Luo, “Entropy and superfluid critical parameters of a strongly interacting fermi gas,” Ph.D. thesis, Duke University (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Measurement of the angular drift of the diffracted beam of an AOM. (a) Experimental setup. Light source is a 1064 nm CW fiber laser (IPG, YLR-100-1064-LP) with an output power of 12 W. The Gaussian Beam waist is 1.1 mm. Beam sampler (Thorlabs, BSF10-B) picks out 2% of the laser power. A CMOS beam profiler (Dataray, S-WCD-LCM4C) with a 2048(H)×2048(V) pixels and 5.5 × 5.5 µm pixel size is put at D = 9.5 meter away from the AOM. (b) AOM structure. Tup and Tdown are the temperature of the top and bottom water-cooling plates respectively. They are controlled by two chilled systems independently.
Fig. 2
Fig. 2 AOM angular drift due to thermal transient. (a) Δθ in the vertical direction are measured with different input locations of the input light beam. ΔX is the off center distance of the laser injection position at AOM in the perpendicular-to-diffraction direction. (b) Δθ for different RF driving power with the incoming light location at Δx = 0 (middle point). Blue square, light blue cross, red circle, and black diamond are measured under 4.5, 3.0, 1.8, and 0.8 W RF power, respectively.
Fig. 3
Fig. 3 Schematic of the angular drift due to refraction distribution n(x, t).
Fig. 4
Fig. 4 The dependence of Δθ on the temperature difference between the top and bottom surfaces of an AOM. The linear fitting result is ΔθT = 0.059 mrad/℃.
Fig. 5
Fig. 5 AOM angular drift of the thermal transient with a water cooling setup. (a), the position drift in the vertical direction of AOM, when the laser position is in different value of the AOM. (b), steady position of (a) and position noise comparison between water cooling and non-cooled cases. The standard derivations of water-cooled experiments is 5.5 µrad, while the non-cooled one is 17.5 µrad.
Fig. 6
Fig. 6 The comparison of the angular drift during an evaporative cooling process between water-cooled and non-cooled AOMs with exponential decay RF power for evaporative cooling. The trap depth is lower to 1% in 20 seconds.
Fig. 7
Fig. 7 Measurement results of angular drift in the Bragg diffraction direction with a water cooling setup in the opposite side of piezoelectric transducer. ΔY is the off-the-center distance of the laser injection position at AOM in the diffraction direction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 T ( x , t ) x 2 + q ˙ k = 1 α T ( x , t ) t
T ( x , ) = q ˙ L 2 2 k ( 1 x 2 L 2 ) + T up T down 2 x L + T up + T down 2
T ( x , t ) = θ i e t / τ + T ( x , )
n ( x , t ) = n 0 + d n d T Δ T ( x , t )
sin 2 θ out sin 2 θ in = n i 2 n 0 2
Δ θ = d n d T d T d x n 0 W

Metrics