Abstract

Chiral nematic liquid crystals (CLCs) offer interesting perspectives for device applications and are fascinating materials to study because of their ability to self-assemble into complex structures. This work demonstrates that narrow lines of electron-beam resist on top of an ITO coated glass surface can dramatically influence the formation and growth of short pitch chiral superstructures in the bulk. By applying a voltage to the cell, directional growth of CLC structures along the corrugated surface can be controlled. Below the electric unwinding threshold, chiral structures start to grow along the grating lines with their helical axis parallel to the substrates. This results in a uniform lying helix-like structure at intermediate voltages and a chiral configuration with periodic undulations of the helical axis at low voltages.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In situobservation of dynamic pitch jumps of in-planar cholesteric liquid crystal layers based on wavelength-swept laser

Myeong Ock Ko, Sung-Jo Kim, Jong-Hyun Kim, and Min Yong Jeon
Opt. Express 26(22) 28751-28762 (2018)

Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich
Opt. Lett. 30(4) 349-351 (2005)

Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring

Igor Gvozdovskyy, Oleg Yaroshchuk, Marina Serbina, and Rumiko Yamaguchi
Opt. Express 20(4) 3499-3508 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  2. A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
    [Crossref]
  3. J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
    [Crossref]
  4. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
    [Crossref]
  5. Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012). doi:
    [Crossref]
  6. I. Dierking, “Chiral liquid crystals: structures, phases, effects,” Symmetry (Basel) 6(2), 444–472 (2014).
    [Crossref]
  7. K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technology and Applications of Liquid Crystal Devices (CRC, 2005).
  8. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
    [Crossref] [PubMed]
  9. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  10. Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
    [Crossref] [PubMed]
  11. I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
    [Crossref] [PubMed]
  12. I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
    [Crossref] [PubMed]
  13. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
    [Crossref]
  14. I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
    [Crossref]
  15. H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
    [Crossref]
  16. H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
    [Crossref]
  17. D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
    [Crossref] [PubMed]
  18. B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
    [Crossref]
  19. G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
    [Crossref]
  20. S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
    [Crossref]
  21. M. Wahle, K. Brassat, J. Ebel, J. Bürger, J. K. N. Lindner, and H.-S. Kitzerow, “Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography,” Opt. Express 25(19), 22608–22619 (2017).
    [Crossref] [PubMed]
  22. T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
    [Crossref]
  23. I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
    [Crossref]
  24. I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
    [Crossref] [PubMed]
  25. D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
    [Crossref]
  26. X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
    [Crossref] [PubMed]
  27. J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
    [Crossref] [PubMed]
  28. F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
    [Crossref]
  29. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
    [Crossref] [PubMed]
  30. R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
    [Crossref]
  31. E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
    [Crossref]
  32. E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
    [Crossref]
  33. R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
    [Crossref]
  34. B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113(4), 043103 (2013).
    [Crossref]
  35. C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
    [Crossref]
  36. I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
    [Crossref]

2018 (4)

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
[Crossref]

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

2017 (4)

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

M. Wahle, K. Brassat, J. Ebel, J. Bürger, J. K. N. Lindner, and H.-S. Kitzerow, “Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography,” Opt. Express 25(19), 22608–22619 (2017).
[Crossref] [PubMed]

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

2016 (3)

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

2015 (4)

I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref] [PubMed]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

2014 (2)

I. Dierking, “Chiral liquid crystals: structures, phases, effects,” Symmetry (Basel) 6(2), 444–472 (2014).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref] [PubMed]

2013 (2)

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113(4), 043103 (2013).
[Crossref]

2012 (1)

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

2011 (3)

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

2010 (1)

H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
[Crossref]

2008 (1)

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

2007 (2)

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2006 (2)

D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
[Crossref] [PubMed]

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

2005 (1)

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

1973 (1)

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

1970 (1)

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

Anibal Fernandez, F.

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Armas-Perez, J. C.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Artemov, V. V.

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Asquini, R.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

Beccherelli, R.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

Beeckman, J.

I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
[Crossref]

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref] [PubMed]

I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
[Crossref]

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

Bishop, C.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Booth, M.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Booth, M. J.

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

Brassat, K.

Bulja, S.

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Bürger, J.

Carbone, G.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Chen, K.

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

Chen, L. J.

D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
[Crossref] [PubMed]

Chiou, D. R.

D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
[Crossref] [PubMed]

Corbett, D.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

d’Alessandro, A.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

Day, S. E.

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

de Pablo, J. J.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, “Chiral liquid crystals: structures, phases, effects,” Symmetry (Basel) 6(2), 444–472 (2014).
[Crossref]

Dong, K.-Y.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Ebel, J.

Elston, S. J.

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113(4), 043103 (2013).
[Crossref]

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Escuti, M. J.

Fernández, F. A.

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

FernandezFernandez, F. A.

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

Fujibayashi, K.

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Geivandov, A. R.

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Gilardi, G.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

Gorkunov, M. V.

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Guo, Y.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Hernandez-Ortiz, J. P.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

James, R.

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Jeong, H.-Y.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Jesacher, A.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Jiang, M.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Ju, B.-K.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Kagajyo, T.

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Kahn, F. J.

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

Kasyanova, I. V.

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Kawai, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Kawatsuki, N.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Kim, J.

Kim, Y.-H.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Kitzerow, H.-S.

Kudenov, M. W.

Lagerwall, J. P. F.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

Lavrentovich, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Lee, C. D.

D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
[Crossref] [PubMed]

Lee, J.-J.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Li, X.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Li, Y.

Lindner, J. K. N.

Liu, X.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Martinez-Gonzalez, J. A.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Martínez-González, J. A.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

Martini, L.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

Meyer, R. B.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Mirshekar-Syahkal, D.

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Miskiewicz, M. N.

Morris, S. M.

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

Nealey, P. F.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Nersesyan, V.

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

Neyts, K.

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref] [PubMed]

I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
[Crossref]

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Noda, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Nys, I.

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref] [PubMed]

I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
[Crossref]

Oh, B.-Y.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Oh, C.

Okada, H.

H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
[Crossref]

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Onnagawa, H.

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Ono, H.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Outram, B. I.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113(4), 043103 (2013).
[Crossref]

Palto, S. P.

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Park, H.-G.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Patel, J. S.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Peng, C.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Raynes, P.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Sadati, M.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

Sakamoto, M.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Sakamoto, T.

H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
[Crossref]

Salter, P. S.

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

Sasaki, T.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Scalia, G.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

Seo, D.-S.

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

Shimamura, T.

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Siemianowski, S.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

Simmonds, R.

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

Snow, B.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

Sun, K.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Takahashi, H.

H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
[Crossref]

Tartan, C. C.

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

Tuffin, R.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

Vanbrabant, P. J. M.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Wahle, M.

Wei, Q.-H.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Willman, E.

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Xie, H.

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Yaroshchuk, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Yazdanpanahi, M.

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Zhang, R.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

Zhou, Y.

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

I. Nys, K. Chen, J. Beeckman, and K. Neyts, “Periodic planar-homeotropic anchoring realized by photoalignment for stabilization of chiral superstructures,” Adv. Opt. Mater. 6(6), 1701163 (2018).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Surface‐mediated alignment of long pitch chiral nematic liquid crystal structures,” Adv. Opt. Mater. 6(13), 1800070 (2018).
[Crossref]

Beilstein J. Nanotechnol. (1)

I. V. Kasyanova, A. R. Geivandov, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, “Nematic liquid crystal alignment on subwavelength metal gratings,” Beilstein J. Nanotechnol. 9, 42–47 (2018).
[Crossref] [PubMed]

Condens. Matter (1)

S. P. Palto, A. R. Geivandov, I. V. Kasyanova, V. V. Artemov, and M. V. Gorkunov, “Micro- and nanostructures for the spatially periodic orientation of liquid crystals obtained by focused ion beam milling,” Condens. Matter 105(3), 174–178 (2017).
[Crossref]

Curr. Appl. Phys. (1)

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonics Technol. Lett. 27(16), 1709–1712 (2015).
[Crossref]

IEEE Trans. Electron Dev. (2)

R. James, E. Willman, F. A. FernandezFernandez, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev. 53(7), 1575–1582 (2006).
[Crossref]

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory,” IEEE Trans. Electron Dev. 54(10), 2630–2637 (2007).
[Crossref]

J. Appl. Phys. (5)

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113(4), 043103 (2013).
[Crossref]

C. C. Tartan, P. S. Salter, M. J. Booth, S. M. Morris, and S. J. Elston, “Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching,” J. Appl. Phys. 119(18), 183106 (2016).
[Crossref]

H. Takahashi, T. Sakamoto, and H. Okada, “Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography,” J. Appl. Phys. 108(11), 113529 (2010).
[Crossref]

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113(21), 213111 (2013).
[Crossref]

J. Disp. Technol. (1)

E. Willman, F. A. Fernández, R. James, and S. E. Day, “Switching dynamics of a post-aligned bistable nematic liquid crystal device,” J. Disp. Technol. 4(3), 276–281 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, and H. Onnagawa, “Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method,” Jpn. J. Appl. Phys. 44(1B), 578–581 (2005).
[Crossref]

Langmuir (1)

D. R. Chiou, L. J. Chen, and C. D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22(22), 9403–9408 (2006).
[Crossref] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 37–49 (2011).
[Crossref]

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

Nat. Commun. (1)

J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals,” Nat. Commun. 8, 15854 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. Lett. (2)

F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Proc. SPIE (1)

I. Nys, J. Beeckman, and K. Neyts, “One- and two-dimensional liquid crystal structures for lasing applications,” Proc. SPIE 9565, 956513 (2015).
[Crossref]

Soft Matter (4)

X. Li, J. C. Armas-Perez, J. A. Martinez-Gonzalez, X. Liu, H. Xie, C. Bishop, J. P. Hernandez-Ortiz, R. Zhang, J. J. de Pablo, and P. F. Nealey, “Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions,” Soft Matter 12(41), 8595–8605 (2016).
[Crossref] [PubMed]

H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11(39), 7802–7808 (2015).
[Crossref] [PubMed]

I. Nys, V. Nersesyan, J. Beeckman, and K. Neyts, “Complex liquid crystal superstructures induced by periodic photo-alignment at top and bottom substrates,” Soft Matter 14(33), 6892–6902 (2018).
[Crossref] [PubMed]

Symmetry (Basel) (1)

I. Dierking, “Chiral liquid crystals: structures, phases, effects,” Symmetry (Basel) 6(2), 444–472 (2014).
[Crossref]

Other (3)

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technology and Applications of Liquid Crystal Devices (CRC, 2005).

Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012). doi:
[Crossref]

R. James, F. Anibal Fernandez, S. E. Day, S. Bulja, D. Mirshekar-Syahkal, and M. Yazdanpanahi, “Finite Element Analysis of a Balanced Microstrip Line Filled with Nematic Liquid Crystal,” in 2009 IEEE MTT-S International Microwave Symposium, 1–3, (IEEE, 2009), pp. 133–136.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic overview of the cell configuration and the four different grating periods Λ tested for the alignment of short pitch CLC (p ≈335 nm). The e-beam resist at the bottom substrate is removed in the exposed areas, resulting in isolated grating lines (along y) in which the LC is in contact with the ITO covered glass substrates [23]. (b) SEM images for the resulting e-beam resist lines (smooth dark lines) on top of an ITO-covered glass substrate (rough bright lines) after development for three different exposure doses (75 μC/cm2, 100 μC/cm2 and 125 μC/cm2 from left to right) and grating period �� = p.
Fig. 2
Fig. 2 (a) POM images for decreasing voltages (26 Vp, 20 Vp and 0 Vp), with the grating rotated over 0° (top) and ± 37° (bottom) with respect to the crossed polarizers. (b) POM images (for the grating with �� = p/2) for different time intervals after decreasing the voltage to 26 Vp. The orientation of the grating lines is indicated by the white arrow. The cell thickness is d = 3.0 μm, the pitch p = 335 nm and the illumination dose of the grating was 75 μC/cm2. Outside the square grating areas, resist is still present on top of the ITO-covered glass substrate.
Fig. 3
Fig. 3 POM images at 0 V with the grating lines under an angle of 35° with the crossed polarizers (a) and with the grating lines aligned with the analyzer (b). The orientation of the grating lines is indicated with a white arrow. The cell thickness is 3.0 μm, the pitch p = 335 nm and the illumination dose was 75 μC/cm2. Four different ratios between �� and p are shown.
Fig. 4
Fig. 4 (a) POM images at 6 Vp, 4 Vp, 3 Vp and 0 Vp with the grating lines under an angle of 23° with the crossed polarizers. (b,c) Enlarged image at 6 Vp (b) and 0 Vp (c). The orientation of the grating lines is indicated with a white arrow. The scale bar in all images has a length of 50 μm. The cell thickness is 3.0 μm, the pitch p = 335 nm and the illumination dose was 75 μC/cm2. The periodicity of the grating lines is Λ ≈p/2.
Fig. 5
Fig. 5 POM images at 21 Vp, 18 Vp and 0 Vp with the grating lines under an angle of 45° with the crossed polarizers. The orientation of the grating lines is indicated with a white arrow. The cell thickness is 2.1 μm, the pitch p = 335 nm and the illumination dose was 90 μC/cm2. The periodicity of the grating lines is Λ = p/2.
Fig. 6
Fig. 6 Simulation results for the director configuration (c,d) and the transmission between crossed polarizers (b) for a short pitch (p = 335 nm) CLC structure with undulations of the helical axis at 6 Vp. (a) Overview of the simulated domain with dimensions 0.7 µm x 2.5 µm x 3.0 µm, with indication of the cross sections used in (c) and (d). Periodic boundary conditions are used in the x- and y-direction, while the anchoring is fixed at the bottom substrate and left free at the top substrate. (b) The transmission is simulated for an orientation of the grating lines (white arrow) of 22.5° between crossed polarizers, as for the experiments in Fig. 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E C = π 2 p K 22 ε 0 Δε

Metrics