Abstract

We present a convenient approach to facilitate the real-time generation of updatable dynamically patterned cholesteric liquid crystal (CLC) fingerprint textures based on photoconductive effect. The photoconductive Bi12SiO20 (BSO) substrate acts as virtual electrode to obtain the desired states of CLCs by both electric and light fields. Owing to different boundary conditions, the switching of four states; that is, planar, fingerprint, metastable, and homeotropic states, and the rotation of fingerprint stripes can be achieved in planar alignment (PA) cell and hybrid alignment (HA) cell, respectively. With the aid of a digital micro-mirror (DMD)-based exposure system, binary and gray-scale images were successfully written and updated by light upon suitable voltages. This work provides an alternative approach to photoaddress CLC fingerprint patterns, without needing special photoalignment agents or photoresponsitive chiral dopants. We expect that it could be employed in the manipulation of nano/micro-objects by light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures

Yuan Shen, Yan-Chao Xu, Ya-Hao Ge, Rong-guo Jiang, Xiao-Zhong Wang, Sen-Sen Li, and Lu-Jian Chen
Opt. Express 26(2) 1422-1432 (2018)

Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization

Wen-Song Li, Ling-Ling Ma, Ling-Li Gong, Sen-Sen Li, Can Yang, Bin Luo, Wei Hu, and Lu-Jian Chen
Opt. Mater. Express 6(1) 19-28 (2016)

Optical control of the rotation of cholesteric liquid crystal gratings

Andy Y.-G Fuh, Tsung-Hsien Lin, Yan-Yu Chen, Cheng-Chang Li, and Hung-Chang Jau
Opt. Express 27(8) 10806-10812 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Nickmans and A. P. H. J. Schenning, “Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning,” Adv. Mater. 30(3), 1703713 (2018).
    [Crossref] [PubMed]
  2. I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41(3), 418–429 (2014).
    [Crossref]
  3. L. Wang, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
    [Crossref]
  4. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  5. A. Ryabchun and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
    [Crossref]
  6. G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
    [Crossref]
  7. O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
    [Crossref]
  8. H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
    [Crossref]
  9. H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
    [Crossref]
  10. H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
    [Crossref] [PubMed]
  11. K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
    [Crossref]
  12. W.-S. Li, Y. Shen, Z.-J. Chen, Q. Cui, S.-S. Li, and L.-J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
    [Crossref] [PubMed]
  13. W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
    [Crossref]
  14. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [Crossref]
  15. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [Crossref]
  16. C.-H. Lin, R.-H. Chiang, S.-H. Liu, C.-T. Kuo, and C.-Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
    [Crossref] [PubMed]
  17. A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
    [Crossref]
  18. L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
    [Crossref]
  19. T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
    [Crossref] [PubMed]
  20. H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
    [Crossref] [PubMed]
  21. Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
    [Crossref] [PubMed]
  22. H. K. Bisoyi and Q. Li, “Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications,” Chem. Rev. 116(24), 15089–15166 (2016).
    [Crossref] [PubMed]
  23. L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
    [Crossref]
  24. S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
    [Crossref]
  25. Y. Shen, Y. C. Xu, Y. H. Ge, R. G. Jiang, X. Z. Wang, S. S. Li, and L. J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
    [Crossref] [PubMed]
  26. A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
    [Crossref]
  27. W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
    [Crossref]
  28. P. Gunter and J. P. Huignard, Photorefractive Crystals and their Applications (Springer-Verlag & Berlin Heidelberg, 1989).
  29. C. T. Kuo, R. H. Chiang, C. Y. Wang, P. H. Hsieh, Y. T. Lin, C. H. Lin, and C. Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
    [Crossref] [PubMed]
  30. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  31. P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material,” Appl. Opt. 21(20), 3706–3712 (1982).
    [Crossref] [PubMed]
  32. U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
    [Crossref] [PubMed]
  33. U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
    [Crossref] [PubMed]
  34. U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
    [Crossref]
  35. D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
    [Crossref]
  36. N. Kravets and E. Brasselet, “Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements,” Phys. Rev. A (Coll. Park) 97(1), 013834 (2018).
    [Crossref]
  37. B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
    [Crossref]
  38. C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
    [Crossref]

2018 (6)

K. Nickmans and A. P. H. J. Schenning, “Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning,” Adv. Mater. 30(3), 1703713 (2018).
[Crossref] [PubMed]

A. Ryabchun and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
[Crossref] [PubMed]

Y. Shen, Y. C. Xu, Y. H. Ge, R. G. Jiang, X. Z. Wang, S. S. Li, and L. J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
[Crossref] [PubMed]

N. Kravets and E. Brasselet, “Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements,” Phys. Rev. A (Coll. Park) 97(1), 013834 (2018).
[Crossref]

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

2017 (6)

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

W.-S. Li, Y. Shen, Z.-J. Chen, Q. Cui, S.-S. Li, and L.-J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

2016 (3)

L. Wang, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref] [PubMed]

2015 (3)

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

2014 (2)

2013 (1)

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

2012 (6)

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

C.-H. Lin, R.-H. Chiang, S.-H. Liu, C.-T. Kuo, and C.-Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

2011 (1)

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

2010 (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2006 (1)

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

2005 (1)

U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
[Crossref] [PubMed]

2004 (1)

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

1999 (1)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

1983 (1)

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

1982 (1)

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Aubourg, P.

Bisoyi, H. K.

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref] [PubMed]

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Bobrovsky, A.

A. Ryabchun and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

Bortolozzo, U.

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
[Crossref] [PubMed]

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Brasselet, E.

N. Kravets and E. Brasselet, “Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements,” Phys. Rev. A (Coll. Park) 97(1), 013834 (2018).
[Crossref]

Bunning, T. J.

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
[Crossref] [PubMed]

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Cai, Z.-P.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Chang, Z.-N.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Chen, C.-W.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chen, F.-C.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Chen, H. W.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Chen, L. J.

Chen, L.-J.

W.-S. Li, Y. Shen, Z.-J. Chen, Q. Cui, S.-S. Li, and L.-J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Chen, S.-H.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Chen, T.-J.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Chen, Y.-Y.

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chen, Z.-J.

Chiang, R. H.

Chiang, R.-H.

Chigrinov, V.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Choi, J. W.

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Cui, Q.

Dajie Huang, D. H.

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

Duan, W.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

Fan, X.-Y.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Fuh, A. Y. G.

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Ge, Y. H.

Gong, L.-L.

Gou, F. W.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Guo, Y.

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

Hareng, M.

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Hsieh, P. H.

Hu, H. C.

Hu, W.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Huang, C. Y.

Huang, C.-Y.

Huang, W.

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Huang, Y. G.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Huignard, J. P.

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material,” Appl. Opt. 21(20), 3706–3712 (1982).
[Crossref] [PubMed]

Illiaquer, G.

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

Jau, H.-C.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Jeong, H. S.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Ji, W.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Jiang, R. G.

Jung, H. T.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kim, J. H.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kim, Y. H.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Kosa, T.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Kozyreff, G.

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Kravets, N.

N. Kravets and E. Brasselet, “Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements,” Phys. Rev. A (Coll. Park) 97(1), 013834 (2018).
[Crossref]

Kuo, C. T.

Kuo, C.-T.

Lan, Y. F.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Lavrentovich, O. D.

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Lee, J. S.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Lee, K.-L.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Lee, Y. H.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Li, C.-C.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Li, Q.

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref] [PubMed]

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Li, S. S.

Li, S.-S.

W.-S. Li, Y. Shen, Z.-J. Chen, Q. Cui, S.-S. Li, and L.-J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Li, W.-S.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W.-S. Li, Y. Shen, Z.-J. Chen, Q. Cui, S.-S. Li, and L.-J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Li, Y.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Liang, X.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

Lin, C. H.

Lin, C.-H.

Lin, T.-H.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Lin, X. W.

Lin, Y. T.

Liu, J.-H.

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Liu, S.-H.

Loiseaux, B.

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

Lu, Y. Q.

Lu, Y.-Q.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Luo, B.

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Ma, L.-L.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

W.-S. Li, L.-L. Ma, L.-L. Gong, S.-S. Li, C. Yang, B. Luo, W. Hu, and L.-J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Mullen, R. A.

Muševic, I.

I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41(3), 418–429 (2014).
[Crossref]

Nickmans, K.

K. Nickmans and A. P. H. J. Schenning, “Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning,” Adv. Mater. 30(3), 1703713 (2018).
[Crossref] [PubMed]

Pastur, L.

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Peng, C.

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

Petrosyan, A.

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

Pichon, L.

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

Ramazza, P. L.

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Residori, S.

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
[Crossref] [PubMed]

Rojas, R.

U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
[Crossref] [PubMed]

Ryabchun, A.

A. Ryabchun and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

Sakhno, O.

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

Schenning, A. P. H. J.

K. Nickmans and A. P. H. J. Schenning, “Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning,” Adv. Mater. 30(3), 1703713 (2018).
[Crossref] [PubMed]

Shen, D.

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Shen, Y.

Shibaev, V.

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

Shiyanovskii, S. V.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Srinivasarao, M.

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

Stumpe, J.

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

Su, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Sukhomlinova, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Taheri, B.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Tan, G. J.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Tang, M.-J.

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

Tlidi, M.

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Tsai, C. Y.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Turiv, T.

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

Voloschenko, D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Wang, C. Y.

Wang, C.-T.

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Wang, L.

L. Wang, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

Wang, X. Z.

Wang, Y.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Wei, Q.-H.

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

Wei Fan, W. F.

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

White, T. J.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Wu, H.

Wu, J.-J.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Wu, S. T.

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Wu, Y.-S.

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Xu, Y. C.

Xu, Y.-C.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Xuechun Li, X. L.

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

Yang, C.

Yuan, C.

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Zheng, Z.

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Zheng, Z.-G.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Zhu, G.

Zunqi Lin, Z. L.

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

Adv. Mater. (4)

K. Nickmans and A. P. H. J. Schenning, “Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning,” Adv. Mater. 30(3), 1703713 (2018).
[Crossref] [PubMed]

H. S. Jeong, Y. H. Kim, J. S. Lee, J. H. Kim, M. Srinivasarao, and H. T. Jung, “Chiral nematic fluids as masks for lithography,” Adv. Mater. 24(3), 381–384 (2012).
[Crossref] [PubMed]

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-driven control of the helical axis of self-organized soft helical superstructures,” Adv. Mater. 30(25), 1706512 (2018).
[Crossref] [PubMed]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (5)

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

A. Ryabchun, O. Sakhno, J. Stumpe, and A. Bobrovsky, “Full-polymer cholesteric composites for transmission and reflection holographic gratings,” Adv. Opt. Mater. 5(17), 1700314 (2017).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
[Crossref]

H.-C. Jau, Y. Li, C.-C. Li, C.-W. Chen, C.-T. Wang, H. K. Bisoyi, T.-H. Lin, T. J. Bunning, and Q. Li, “Light-Driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

H.-C. Jau, T.-H. Lin, Y.-Y. Chen, C.-W. Chen, J.-H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chem. Rev. (1)

H. K. Bisoyi and Q. Li, “Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications,” Chem. Rev. 116(24), 15089–15166 (2016).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

D. H. Dajie Huang, W. F. Wei Fan, X. L. Xuechun Li, and Z. L. Zunqi Lin, “Performance of an optically addressed liquid crystal light valve and its application in optics damage protection,” Chin. Opt. Lett. 11(7), 72301–72305 (2013).
[Crossref]

J. Chem. Phys. (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

W. Huang, C. Yuan, D. Shen, and Z. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. J. Tan, Y. H. Lee, F. W. Gou, H. W. Chen, Y. G. Huang, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

K.-L. Lee, J.-J. Wu, T.-J. Chen, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jpn. J. Appl. Phys. 50(3R), 032601 (2011).
[Crossref]

Liq. Cryst. (3)

I. Muševič, “Integrated and topological liquid crystal photonics,” Liq. Cryst. 41(3), 418–429 (2014).
[Crossref]

L. Wang, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis,” Liq. Cryst. 45(13-15), 1936–1943 (2018).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Nature (1)

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

U. Bortolozzo, S. Residori, A. Petrosyan, and J. P. Huignard, “Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve,” Opt. Commun. 263(2), 317–321 (2006).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. A (Coll. Park) (1)

N. Kravets and E. Brasselet, “Nonlinear unitary transformations of space-variant polarized light fields from self-induced geometric-phase optical elements,” Phys. Rev. A (Coll. Park) 97(1), 013834 (2018).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

U. Bortolozzo, R. Rojas, and S. Residori, “Spontaneous nucleation of localized peaks in a multistable nonlinear system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 045201 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bistability between different localized structures in nonlinear optics,” Phys. Rev. Lett. 93(25), 253901 (2004).
[Crossref] [PubMed]

Polymers (Basel) (1)

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(12), 295 (2017).
[Crossref]

Proc. SPIE (2)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

B. Loiseaux, L. Pichon, G. Illiaquer, and J. P. Huignard, “Dynamic optical cross-correlator using a liquid crystal light valve for real time data input,” Proc. SPIE 0369, 467–473 (1983).
[Crossref]

Other (1)

P. Gunter and J. P. Huignard, Photorefractive Crystals and their Applications (Springer-Verlag & Berlin Heidelberg, 1989).

Supplementary Material (1)

NameDescription
» Visualization 1       A rotating hexagon CLC pattern.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic photoconductive CLC cells for (a) planar alignment (PA) and (b) hybrid alignment (HA) configurations. (c) The DMD-based exposure system. (BSO and DMD represent the photoconductive crystal Bi12SiO20 and digital micro mirror, respectively.)
Fig. 2
Fig. 2 (a) The POM images of four CLC states (planar, fingerprint, metastable and homeotropic states) and (b) the state switching in the correlative relationship between the electric and light fields in PA cell. The thickness of BSO substrate is 1.2 mm. The scale bar is 100 μm.
Fig. 3
Fig. 3 (a) The equivalent electrical circuit model of optically addressed photoconductive CLC cells and the state-transition lines of PA cells between (b) planar and fingerprint states, (c) fingerprint and metastable states, (d) metastable and homeotropic states for different BSO thicknesses of 0.8, 1.0 and 1.2 mm.
Fig. 4
Fig. 4 (a) The diffraction patterns of fingerprint gratings in HA cell at 16 V with rotation angles getting larger from left to right and top to bottom corresponding to increasing illumination intensity and (b) wider ranges of rotation angles for higher operating voltages. The rotation angle is defined as the angle between the grating vector and the vertical downwards direction. The thickness of BSO substrate is 1.0 mm.
Fig. 5
Fig. 5 The POM images of CLC patterns in HA cells with (a) white-in-black and (b) black-in-white binary images of various widths (15-75 μm and 30-105 μm, respectively), (c) gray-in-black and (d) gray-in-white binary images of various gray scale values (80-255 and 0-200, respectively), (e) a fingerprint pattern of English alphabets in the homeotropic background and (f) a rotating hexagon (see Visualization 1), (g) textures of the four CLC states. The underneath insets in (a)-(d) denote the corresponding rectangular patterns generated by the DMD system. The thickness of BSO substrate is 0.8 mm. The scale bar is 300 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V LC = V AC 1 R 0 + 1 R Φ +jω C BSO + jω C 1 1+jω R 1 C 1 1 R 0 + 1 R Φ +jω C BSO + jω C 1 1+jω R 1 C 1 + 1 R CLC +jω C CLC ,

Metrics