Abstract

Synthetic aperture particle image velocimetry (SAPIV) provides a non-invasive means of revealing the physics of complex flows using a compact camera array to resolve the 3D flow field with high temporal and spatial resolution. Intensity-threshold-based methods of reconstructing the flow field are unsatisfactory in nonuniform illuminated fluid flows. This article investigates the characteristics of the focused particles in re-projected image stacks, and presents a convolutional neural network (CNN)-based particle field reconstruction method. The CNN architecture determines the likelihood of each area containing focused particles in the re-projected 3D image stacks. The structural similarity between the images projected by the reconstructed particle field and the images captured from the cameras is then computed, allowing in-focus particles to be extracted. The feasibility of our method is investigated through synthetic simulations and experiments. The results show that the proposed technique achieves remarkable performance, paving the way for non-uniformly illuminated particle field applications in 3D velocity measurements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D SAPIV particle field reconstruction method based on adaptive threshold

Xiangju Qu, Yang Song, Ying Jin, Zhenhua Li, Xuezhen Wang, ZhenYan Guo, Yunjing Ji, and Anzhi He
Appl. Opt. 57(7) 1622-1633 (2018)

Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography

Jianan Zhao, Hecong Liu, and Weiwei Cai
Appl. Opt. 58(6) 1363-1373 (2019)

Multiple-plane particle image velocimetry using a light-field camera

Christoph Skupsch and Christoph Brücker
Opt. Express 21(2) 1726-1740 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Yu, H. Liu, and W. Cai, “On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence,” Opt. Express 25(20), 24093–24108 (2017).
    [Crossref] [PubMed]
  2. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Pror. Energy Combust. Sci. 59, 1–31 (2017).
    [Crossref]
  3. A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
    [Crossref]
  4. K. Mohri, S. Görs, J. Schöler, A. Rittler, T. Dreier, C. Schulz, and A. Kempf, “Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence,” Appl. Opt. 56(26), 7385–7395 (2017).
    [Crossref] [PubMed]
  5. Y. Song, J. Wang, Y. Jin, Z. Guo, Y. Ji, A. He, and Z. Li, “Implementation of multidirectional moiré computerized tomography: multidirectional affine calibration,” J. Opt. Soc. Am. A 33(12), 2385–2395 (2016).
    [Crossref] [PubMed]
  6. Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25(5), 4640–4654 (2017).
    [Crossref] [PubMed]
  7. K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
    [Crossref]
  8. S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol. 29(4), 042001 (2018).
    [Crossref]
  9. F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
    [Crossref]
  10. A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29(2), 103–116 (2000).
    [Crossref]
  11. M. Arroyo and C. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
    [Crossref]
  12. T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
    [Crossref]
  13. F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
    [Crossref]
  14. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), 201 (2002).
    [Crossref]
  15. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
    [Crossref]
  16. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
    [Crossref]
  17. G. E. Elsinga, B. Wieneke, F. Scarano, and A. Schröder, “Tomographic 3D-PIV and applications,” in Particle image velocimetry (Springer, 2007), pp. 103–125.
  18. F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
    [Crossref]
  19. X. Qu, Y. Song, Y. Jin, Z. Li, X. Wang, Z. Guo, Y. Ji, and A. He, “3D SAPIV particle field reconstruction method based on adaptive threshold,” Appl. Opt. 57(7), 1622–1633 (2018).
    [Crossref] [PubMed]
  20. N. Liu, Y. Wu, and L. Ma, “Quantification of tomographic PIV uncertainty using controlled experimental measurements,” Appl. Opt. 57(3), 420–427 (2018).
    [Crossref] [PubMed]
  21. C. Atkinson and J. Soria, “An efficient simultaneous reconstruction technique for tomographic particle image velocimetry,” Exp. Fluids 47(4-5), 553–568 (2009).
    [Crossref]
  22. S. Discetti and T. Astarita, “A fast multi-resolution approach to tomographic PIV,” Exp. Fluids 52(3), 765–777 (2012).
    [Crossref]
  23. M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
    [Crossref]
  24. K. Lynch and F. Scarano, “An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV,” Exp. Fluids 56(3), 66 (2015).
    [Crossref]
  25. F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
    [Crossref]
  26. T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
    [Crossref]
  27. T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).
  28. E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
    [Crossref]
  29. T. W. Fahringer and B. S. Thurow, “Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” Meas. Sci. Technol. 27(9), 094005 (2016).
    [Crossref]
  30. E. M. Hall, B. S. Thurow, and D. R. Guildenbecher, “Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography,” Appl. Opt. 55(23), 6410–6420 (2016).
    [Crossref] [PubMed]
  31. S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
    [Crossref]
  32. B. S. Thurow and T. Fahringer, “Recent development of volumetric PIV with a plenoptic camera,” in 10th Int. Symp. PIV (PIV’13), Delft, The Netherlands (July 1–3, 2013).
  33. E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “Uncertainty characterization of particle location from refocused plenoptic images,” Opt. Express 25(18), 21801–21814 (2017).
    [Crossref] [PubMed]
  34. T. Fahringer and B. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in 11th Int. Symp. PIV (PIV15), Santa Barbara, California (2015).
  35. S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
    [Crossref]
  36. D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
    [Crossref]
  37. D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).
  38. J. M. Lawson and J. R. Dawson, “A scanning PIV method for fine-scale turbulence measurements,” Exp. Fluids 55(12), 1857 (2014).
    [Crossref]
  39. J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).
  40. J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
    [Crossref]
  41. J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
    [Crossref]
  42. M. E. Paciaroni, Y. Chen, K. P. Lynch, and D. R. Guildenbecher, “Backscatter particle image velocimetry via optical time-of-flight sectioning,” Opt. Lett. 43(2), 312–315 (2018).
    [Crossref] [PubMed]
  43. J. Zhao, H. Liu, and W. Cai, “Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography,” Appl. Opt. 58(6), 1363–1373 (2019).
    [Crossref] [PubMed]
  44. J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
    [Crossref]
  45. D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
    [Crossref]
  46. L. Mendelson and A. H. Techet, “3D synthetic aperture PIV of a swimming fish,” in 10th Int. Symp. PIV (PIV’13), Delft, The Netherlands (July 1–3, 2013), pp. 1–6.
  47. L. Mendelson and A. H. Techet, “Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV,” Exp. Fluids 56(7), 135 (2015).
    [Crossref]
  48. L. Mendelson and A. H. Techet, “Multi-camera volumetric PIV for the study of jumping fish,” Exp. Fluids 59(1), 10 (2018).
    [Crossref]
  49. K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
    [Crossref]
  50. J. R. Nielson, D. J. Daily, T. T. Truscott, G. Luegmair, M. Döllinger, and S. L. Thomson, “Simultaneous tracking of vocal fold superior surface motion and glottal jet dynamics,” in ASME 2013 Int. Mech. Eng. Congr. Expo., San Diego, California (2013), pp. V03BT03A039.
    [Crossref]
  51. J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
    [Crossref]
  52. A. Bajpayee and A. H. Techet, “Fast volume reconstruction for 3D PIV,” Exp. Fluids 58(8), 95 (2017).
    [Crossref]
  53. V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proc. IEEE Conf. Comput. Vision Pattern Recog. (IEEE, 2004), pp. I-2–I-9.
    [Crossref]
  54. K. Lynch and B. Thurow, “Preliminary development of a 3-D, 3-C PIV technique using light field imaging,” in AIAA Fluid Dyn. Conf. Exhib., Hawaii (2013).
  55. A. Bajpayee, “3D particle tracking velocimetry using synthetic aperture imaging,” M.S. thesis (Massachusetts Institute of Technology, 2014).
  56. F. Zhang, Y. Song, X. Qu, Y. Ji, Z. Li, and A. He, “Three-dimensional illumination system for tomographic particle image velocimetry,” in Optical Design and Testing VII (International Society for Optics and Photonics, 2016), p. 100211D.
  57. A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
    [Crossref]
  58. F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
    [Crossref]
  59. X. Qu, Y. Song, L. Xu, Y. Jin, Z. Li, and A. He, “Analysis of laser intensity attenuation and compensation and the influence on imaging through particle field,” in AOPC 2017: Optical Sensing and Imaging Technology and Applications (International Society for Optics and Photonics, 2017), p. 104622N.
  60. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
    [Crossref] [PubMed]
  61. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV (International Society for Optics and Photonics, 2007), p. 64430D.
  62. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
    [Crossref]
  63. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556 (2014)
  64. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167 (2015).
  65. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).
  66. Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).
    [Crossref]
  67. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
    [Crossref] [PubMed]
  68. J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Synthetic aperture imaging core code package,” http://saimaging.byu.edu/2012/11/27/core-code-package-release-3 .
  69. S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
    [Crossref]

2019 (1)

2018 (9)

M. E. Paciaroni, Y. Chen, K. P. Lynch, and D. R. Guildenbecher, “Backscatter particle image velocimetry via optical time-of-flight sectioning,” Opt. Lett. 43(2), 312–315 (2018).
[Crossref] [PubMed]

N. Liu, Y. Wu, and L. Ma, “Quantification of tomographic PIV uncertainty using controlled experimental measurements,” Appl. Opt. 57(3), 420–427 (2018).
[Crossref] [PubMed]

X. Qu, Y. Song, Y. Jin, Z. Li, X. Wang, Z. Guo, Y. Ji, and A. He, “3D SAPIV particle field reconstruction method based on adaptive threshold,” Appl. Opt. 57(7), 1622–1633 (2018).
[Crossref] [PubMed]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).
[Crossref]

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol. 29(4), 042001 (2018).
[Crossref]

L. Mendelson and A. H. Techet, “Multi-camera volumetric PIV for the study of jumping fish,” Exp. Fluids 59(1), 10 (2018).
[Crossref]

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

2017 (7)

2016 (6)

E. M. Hall, B. S. Thurow, and D. R. Guildenbecher, “Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography,” Appl. Opt. 55(23), 6410–6420 (2016).
[Crossref] [PubMed]

Y. Song, J. Wang, Y. Jin, Z. Guo, Y. Ji, A. He, and Z. Li, “Implementation of multidirectional moiré computerized tomography: multidirectional affine calibration,” J. Opt. Soc. Am. A 33(12), 2385–2395 (2016).
[Crossref] [PubMed]

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
[Crossref]

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

T. W. Fahringer and B. S. Thurow, “Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” Meas. Sci. Technol. 27(9), 094005 (2016).
[Crossref]

2015 (5)

K. Lynch and F. Scarano, “An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV,” Exp. Fluids 56(3), 66 (2015).
[Crossref]

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

L. Mendelson and A. H. Techet, “Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV,” Exp. Fluids 56(7), 135 (2015).
[Crossref]

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

2014 (2)

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

J. M. Lawson and J. R. Dawson, “A scanning PIV method for fine-scale turbulence measurements,” Exp. Fluids 55(12), 1857 (2014).
[Crossref]

2013 (3)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
[Crossref]

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

2012 (2)

S. Discetti and T. Astarita, “A fast multi-resolution approach to tomographic PIV,” Exp. Fluids 52(3), 765–777 (2012).
[Crossref]

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

2010 (3)

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
[Crossref]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

2009 (3)

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

C. Atkinson and J. Soria, “An efficient simultaneous reconstruction technique for tomographic particle image velocimetry,” Exp. Fluids 47(4-5), 553–568 (2009).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

2008 (1)

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

2006 (1)

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

2004 (2)

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

2002 (1)

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), 201 (2002).
[Crossref]

2000 (2)

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29(2), 103–116 (2000).
[Crossref]

1998 (1)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

1997 (1)

S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
[Crossref]

1991 (1)

M. Arroyo and C. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[Crossref]

Abrahamsson, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Adrian, R. J.

S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
[Crossref]

Agard, D. A.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Aguirre-Pablo, A. A.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

Aljedaani, A. B.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

Arroyo, M.

M. Arroyo and C. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[Crossref]

Astarita, T.

S. Discetti and T. Astarita, “A fast multi-resolution approach to tomographic PIV,” Exp. Fluids 52(3), 765–777 (2012).
[Crossref]

Atkinson, C.

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

C. Atkinson and J. Soria, “An efficient simultaneous reconstruction technique for tomographic particle image velocimetry,” Exp. Fluids 47(4-5), 553–568 (2009).
[Crossref]

Axiak, M. C.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

Azevedo, L. F.

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

Bajpayee, A.

A. Bajpayee and A. H. Techet, “Fast volume reconstruction for 3D PIV,” Exp. Fluids 58(8), 95 (2017).
[Crossref]

Bargmann, C. I.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Batenburg, K. J.

M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
[Crossref]

Bauknecht, A.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Belden, J.

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

Bengio, Y.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

Bottou, L.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Brücker, C.

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).

Cai, W.

Cattafesta, L. N.

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

Chen, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Chen, Y.

Coletti, F.

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol. 29(4), 042001 (2018).
[Crossref]

Dabiri, D.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

Dahan, M.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Darzacq, X.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Dawson, J. R.

J. M. Lawson and J. R. Dawson, “A scanning PIV method for fine-scale turbulence measurements,” Exp. Fluids 55(12), 1857 (2014).
[Crossref]

Deem, E. A.

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

Dierksheide, U.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

Ding, J.

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Discetti, S.

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol. 29(4), 042001 (2018).
[Crossref]

S. Discetti and T. Astarita, “A fast multi-resolution approach to tomographic PIV,” Exp. Fluids 52(3), 765–777 (2012).
[Crossref]

Dreier, T.

Dugast Darzacq, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Dun, X.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

Elsinga, G. E.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Ewers, B.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Fahringer, T. W.

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

T. W. Fahringer and B. S. Thurow, “Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” Meas. Sci. Technol. 27(9), 094005 (2016).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

Foucaut, J.-M.

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

Fu, Q.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
[Crossref]

Geisler, R.

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

Gesemann, S.

D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
[Crossref]

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

Gharib, M.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

Görs, S.

Greated, C.

M. Arroyo and C. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[Crossref]

Guildenbecher, D. R.

Günaydin, H.

Guo, Z.

Gustafsson, M. G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Haffner, P.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

Hajj, B.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Hall, E. M.

Hardester, E.

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

Hart, D. P.

D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
[Crossref]

He, A.

Heidrich, W.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
[Crossref]

Hess, D.

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), 201 (2002).
[Crossref]

Hori, T.

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

Idoughi, R.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
[Crossref]

Ji, Y.

Jin, Y.

Jux, C.

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

Kaminski, C. F.

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Pror. Energy Combust. Sci. 59, 1–31 (2017).
[Crossref]

Katsov, A. Y.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Kempf, A.

Kitzhofer, J.

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).

Kubaczyk, D. M.

D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
[Crossref]

Langley, K. R.

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

Lasinger, K.

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

Lawson, J. M.

J. M. Lawson and J. R. Dawson, “A scanning PIV method for fine-scale turbulence measurements,” Exp. Fluids 55(12), 1857 (2014).
[Crossref]

LeCun, Y.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

Leopold, F.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Li, Z.

Lin, X.

Liu, H.

Liu, N.

Liu, Z. C.

S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
[Crossref]

Lynch, K.

K. Lynch and F. Scarano, “An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV,” Exp. Fluids 56(3), 66 (2015).
[Crossref]

K. Lynch and B. Thurow, “Preliminary development of a 3-D, 3-C PIV technique using light field imaging,” in AIAA Fluid Dyn. Conf. Exhib., Hawaii (2013).

Lynch, K. P.

M. E. Paciaroni, Y. Chen, K. P. Lynch, and D. R. Guildenbecher, “Backscatter particle image velocimetry via optical time-of-flight sectioning,” Opt. Lett. 43(2), 312–315 (2018).
[Crossref] [PubMed]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

Ma, L.

Martins, F. J.

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

Mendelson, L.

L. Mendelson and A. H. Techet, “Multi-camera volumetric PIV for the study of jumping fish,” Exp. Fluids 59(1), 10 (2018).
[Crossref]

L. Mendelson and A. H. Techet, “Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV,” Exp. Fluids 56(7), 135 (2015).
[Crossref]

Michaelis, D.

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

Mizuguchi, G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Modarress, D.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

Mohri, K.

Mueller, F.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

New, T.

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Nonn, T.

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).

Novara, M.

M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
[Crossref]

Ozcan, A.

Paciaroni, M. E.

Pereira, F.

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

Pock, T.

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

Poelma, C.

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

Prasad, A. K.

A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29(2), 103–116 (2000).
[Crossref]

Qu, X.

Raffel, M.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Ravela, S.

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

Rittler, A.

Rivenson, Y.

Sakakibara, J.

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

Scarano, F.

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

K. Lynch and F. Scarano, “An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV,” Exp. Fluids 56(3), 66 (2015).
[Crossref]

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Schanz, D.

D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
[Crossref]

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

Schindler, K.

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

Schneiders, J. F.

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

Schöler, J.

Schröder, A.

D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
[Crossref]

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

Schulz, C.

Sciacchitano, A.

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Shi, S.

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Soloff, S. M.

S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
[Crossref]

Song, Y.

Soria, J.

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

C. Atkinson and J. Soria, “An efficient simultaneous reconstruction technique for tomographic particle image velocimetry,” Exp. Fluids 47(4-5), 553–568 (2009).
[Crossref]

Soule, P.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Stallinga, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Stanislas, M.

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

Techet, A. H.

L. Mendelson and A. H. Techet, “Multi-camera volumetric PIV for the study of jumping fish,” Exp. Fluids 59(1), 10 (2018).
[Crossref]

A. Bajpayee and A. H. Techet, “Fast volume reconstruction for 3D PIV,” Exp. Fluids 58(8), 95 (2017).
[Crossref]

L. Mendelson and A. H. Techet, “Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV,” Exp. Fluids 56(7), 135 (2015).
[Crossref]

D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
[Crossref]

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

Thomas, L.

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

Thomson, S. L.

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

Thoroddsen, S. T.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

Thurow, B.

K. Lynch and B. Thurow, “Preliminary development of a 3-D, 3-C PIV technique using light field imaging,” in AIAA Fluid Dyn. Conf. Exhib., Hawaii (2013).

Thurow, B. S.

E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “Uncertainty characterization of particle location from refocused plenoptic images,” Opt. Express 25(18), 21801–21814 (2017).
[Crossref] [PubMed]

E. M. Hall, B. S. Thurow, and D. R. Guildenbecher, “Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography,” Appl. Opt. 55(23), 6410–6420 (2016).
[Crossref] [PubMed]

T. W. Fahringer and B. S. Thurow, “Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” Meas. Sci. Technol. 27(9), 094005 (2016).
[Crossref]

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

Truscott, T. T.

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

van Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Vogel, C.

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

Wang, J.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Y. Song, J. Wang, Y. Jin, Z. Guo, Y. Ji, A. He, and Z. Li, “Implementation of multidirectional moiré computerized tomography: multidirectional affine calibration,” J. Opt. Soc. Am. A 33(12), 2385–2395 (2016).
[Crossref] [PubMed]

Wang, X.

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Wei, Z.

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

Wisniewski, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Wolf, C.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Wu, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Wu, Y.

Xiong, J.

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
[Crossref]

Yin, J.

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

Yu, T.

Zhang, Y.

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).
[Crossref]

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

Zhao, J.

Zhao, Z.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

ACM Trans. Graph. (1)

J. Xiong, R. Idoughi, A. A. Aguirre-Pablo, A. B. Aljedaani, X. Dun, Q. Fu, S. T. Thoroddsen, and W. Heidrich, “Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging,” ACM Trans. Graph. 36(4), 1 (2017).

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Appl. Opt. (5)

Exp. Fluids (18)

L. Mendelson and A. H. Techet, “Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV,” Exp. Fluids 56(7), 135 (2015).
[Crossref]

L. Mendelson and A. H. Techet, “Multi-camera volumetric PIV for the study of jumping fish,” Exp. Fluids 59(1), 10 (2018).
[Crossref]

K. R. Langley, E. Hardester, S. L. Thomson, and T. T. Truscott, “Three-dimensional flow measurements on flapping wings using synthetic aperture PIV,” Exp. Fluids 55(10), 1831 (2014).
[Crossref]

J. Belden, S. Ravela, T. T. Truscott, and A. H. Techet, “Three dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet,” Exp. Fluids 53(3), 839–861 (2012).
[Crossref]

A. Bajpayee and A. H. Techet, “Fast volume reconstruction for 3D PIV,” Exp. Fluids 58(8), 95 (2017).
[Crossref]

A. Schröder, R. Geisler, G. E. Elsinga, F. Scarano, and U. Dierksheide, “Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV,” Exp. Fluids 44(2), 305–316 (2008).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

J. M. Lawson and J. R. Dawson, “A scanning PIV method for fine-scale turbulence measurements,” Exp. Fluids 55(12), 1857 (2014).
[Crossref]

S. Shi, J. Ding, C. Atkinson, J. Soria, and T. New, “A detailed comparison of single-camera light-field PIV and tomographic PIV,” Exp. Fluids 59(3), 46 (2018).
[Crossref]

D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high particle image densities,” Exp. Fluids 57(5), 70 (2016).
[Crossref]

K. Lynch and F. Scarano, “An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV,” Exp. Fluids 56(3), 66 (2015).
[Crossref]

A. Bauknecht, B. Ewers, C. Wolf, F. Leopold, J. Yin, and M. Raffel, “Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system,” Exp. Fluids 56(1), 1866 (2015).
[Crossref]

F. Scarano and C. Poelma, “Three-dimensional vorticity patterns of cylinder wakes,” Exp. Fluids 47(1), 69 (2009).
[Crossref]

A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29(2), 103–116 (2000).
[Crossref]

C. Atkinson and J. Soria, “An efficient simultaneous reconstruction technique for tomographic particle image velocimetry,” Exp. Fluids 47(4-5), 553–568 (2009).
[Crossref]

S. Discetti and T. Astarita, “A fast multi-resolution approach to tomographic PIV,” Exp. Fluids 52(3), 765–777 (2012).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29(7), S078–S084 (2000).
[Crossref]

Flow Meas. Instrum. (1)

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (15)

M. Arroyo and C. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[Crossref]

T. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids,” Meas. Sci. Technol. 15(6), 1067–1078 (2004).
[Crossref]

K. Lasinger, C. Vogel, T. Pock, and K. Schindler, “Variational 3D-PIV with sparse descriptors,” Meas. Sci. Technol. 29(6), 064010 (2018).
[Crossref]

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol. 29(4), 042001 (2018).
[Crossref]

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), 201 (2002).
[Crossref]

M. Novara, K. J. Batenburg, and F. Scarano, “Motion tracking-enhanced MART for tomographic PIV,” Meas. Sci. Technol. 21(3), 035401 (2010).
[Crossref]

E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of plenoptic PIV,” Meas. Sci. Technol. 27(8), 084003 (2016).
[Crossref]

T. W. Fahringer and B. S. Thurow, “Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” Meas. Sci. Technol. 27(9), 094005 (2016).
[Crossref]

F. J. Martins, J.-M. Foucaut, L. Thomas, L. F. Azevedo, and M. Stanislas, “Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data,” Meas. Sci. Technol. 26(8), 085202 (2015).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion compensation for generalized stereoscopic particle image velocimetry,” Meas. Sci. Technol. 8(12), 1441–1454 (1997).
[Crossref]

J. F. Schneiders, F. Scarano, C. Jux, and A. Sciacchitano, “Coaxial volumetric velocimetry,” Meas. Sci. Technol. 29(6), 065201 (2018).
[Crossref]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol. 21(12), 125403 (2010).
[Crossref]

D. M. Kubaczyk, A. H. Techet, and D. P. Hart, “Assessment of radial image distortion and spherical aberration on 3D synthetic aperture PIV measurements,” Meas. Sci. Technol. 24(10), 105402 (2013).
[Crossref]

Nat. Methods (1)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10(1), 60–63 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Proc. IEEE (1)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).
[Crossref]

Pror. Energy Combust. Sci. (1)

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Pror. Energy Combust. Sci. 59, 1–31 (2017).
[Crossref]

Other (18)

G. E. Elsinga, B. Wieneke, F. Scarano, and A. Schröder, “Tomographic 3D-PIV and applications,” in Particle image velocimetry (Springer, 2007), pp. 103–125.

T. Fahringer and B. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in 11th Int. Symp. PIV (PIV15), Santa Barbara, California (2015).

B. S. Thurow and T. Fahringer, “Recent development of volumetric PIV with a plenoptic camera,” in 10th Int. Symp. PIV (PIV’13), Delft, The Netherlands (July 1–3, 2013).

D. Schanz, A. Schröder, S. Gesemann, D. Michaelis, and B. Wieneke, “‘Shake The Box’: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions,” in International Symposium on Particle Image Velocimetry (2013).

J. Xiong, Q. Fu, R. Idoughi, and W. Heidrich, “Reconfigurable rainbow PIV for 3D flow measurement,” in 2018 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2018), pp. 1–9.
[Crossref]

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” in 16th Int. Symp. Appl. Laser Tech. Fluid Mech., Lisbon, Portugal (July 9–12, 2012).

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556 (2014)

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167 (2015).

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV (International Society for Optics and Photonics, 2007), p. 64430D.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Synthetic aperture imaging core code package,” http://saimaging.byu.edu/2012/11/27/core-code-package-release-3 .

X. Qu, Y. Song, L. Xu, Y. Jin, Z. Li, and A. He, “Analysis of laser intensity attenuation and compensation and the influence on imaging through particle field,” in AOPC 2017: Optical Sensing and Imaging Technology and Applications (International Society for Optics and Photonics, 2017), p. 104622N.

V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proc. IEEE Conf. Comput. Vision Pattern Recog. (IEEE, 2004), pp. I-2–I-9.
[Crossref]

K. Lynch and B. Thurow, “Preliminary development of a 3-D, 3-C PIV technique using light field imaging,” in AIAA Fluid Dyn. Conf. Exhib., Hawaii (2013).

A. Bajpayee, “3D particle tracking velocimetry using synthetic aperture imaging,” M.S. thesis (Massachusetts Institute of Technology, 2014).

F. Zhang, Y. Song, X. Qu, Y. Ji, Z. Li, and A. He, “Three-dimensional illumination system for tomographic particle image velocimetry,” in Optical Design and Testing VII (International Society for Optics and Photonics, 2016), p. 100211D.

L. Mendelson and A. H. Techet, “3D synthetic aperture PIV of a swimming fish,” in 10th Int. Symp. PIV (PIV’13), Delft, The Netherlands (July 1–3, 2013), pp. 1–6.

J. R. Nielson, D. J. Daily, T. T. Truscott, G. Luegmair, M. Döllinger, and S. L. Thomson, “Simultaneous tracking of vocal fold superior surface motion and glottal jet dynamics,” in ASME 2013 Int. Mech. Eng. Congr. Expo., San Diego, California (2013), pp. V03BT03A039.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1 Experimental SAPIV setup for a cylinder wake flow in a laser-illuminated volume. Dashed lines enclose the region of interest.
Fig. 2
Fig. 2 3D illumination system. (a) Prism-based beam expander [56], (b) multi-pass light amplification system [57], (c) knife-edge filter-based light amplification system [58].
Fig. 3
Fig. 3 Sixteen-camera array remapping process.
Fig. 4
Fig. 4 Refocused images are cropped and then combined into a 2D image. (a) Neighboring refocused planes. (b) Nine cropped 7 × 7 images from red boxes in (a). (c) Combined image I i,j,k ' of size 21 × 21 pixels, with center location (11,11).
Fig. 5
Fig. 5 Proposed method for reconstructing the particle field.
Fig. 6
Fig. 6 Architecture of our proposed CNN.
Fig. 7
Fig. 7 Schematic depicting six particle field simulations.
Fig. 8
Fig. 8 Schematic depicting particle image simulation.
Fig. 9
Fig. 9 Schematic depicting generation of training data sets.
Fig. 10
Fig. 10 Images generated by the six synthetic fields. Figures 10(a)–10(f) correspond to fields 1–6 described in Table 1.
Fig. 11
Fig. 11 Schematic depicting expansion and NMS process.
Fig. 12
Fig. 12 Particle field in three directions of view (left view, top view, and front view) in (a) frame 1 and (b) frame 2.
Fig. 13
Fig. 13 Fluid motion from frame 1 to frame 2. (a) Motion vector map, (b) vector fields in the cross-section at y = 0 mm; colorbar represents the velocity magnitude.
Fig. 14
Fig. 14 Mean SSIM values with respect to threshold T for two adjacent frames. (a) First frame, (b) second frame of the simulated field.
Fig. 15
Fig. 15 Reconstructed adjacent particle fields. (a) and (b) Method 1, (c) and (d) Method 2, (e) and (f) proposed method.
Fig. 16
Fig. 16 Images from camera 1 for two adjacent frames. (a) and (b) are images captured by camera 1. (c) and (d) are images projected from the Method 1 reconstruction. (e) and (f) are projected from the Method 2 reconstruction. (g) and (h) are projected from the particle fields reconstructed by our method. The areas within the red/white circles for frames 1/2 illustrate the specifics of the reconstructions.
Fig. 17
Fig. 17 SSIM values as a function of the camera number at two adjacent frames reconstructed by the three methods.
Fig. 18
Fig. 18 3D vector field resulting from PIV processing of the three reconstructed intensity volumes. (a), (c), and (e) are the vector fields and vorticity iso-surfaces (0.23 voxels/voxel) reconstructed by Method 1, Method 2, and the proposed method, respectively; (b), (d), and (f) show two cuts with normalized velocity magnitude contours for each reconstructed vortex ring.
Fig. 19
Fig. 19 Error in the three vector fields. (a) Volume reconstructed by Method 1, (b) volume reconstructed by Method 2, and (c) volume reconstructed by our proposed method.
Fig. 20
Fig. 20 Experimental setup with a camera array imaging the flow field. The volume in the water tank was illuminated with a laser.
Fig. 21
Fig. 21 Camera calibration process. The glass tank is filled with water.
Fig. 22
Fig. 22 Experimental setup of cylinder wake flow. (a) 3D diagrammatic sketch, (b) vertical view, and (c) front view.
Fig. 23
Fig. 23 Particle image captured from camera 1 at two adjacent frames. (a) Frame 1, (b) frame 2. Red rectangle denotes the reconstruction area.
Fig. 24
Fig. 24 Mean SSIM values with respect to T for two adjacent frames.
Fig. 25
Fig. 25 Adjacent particle fields reconstructed by the three different methods. (a) and (b) Method 1, (c) and (d) Method 2, (e) and (f) proposed method.
Fig. 26
Fig. 26 Images from camera 1 for two adjacent frames. (a) and (b) are images captured by camera 1. (c) and (d) are images projected from the Method 1 reconstruction fields. (e) and (f) are projected from the Method 2 reconstruction fields. (g) and (h) are projected from the particle fields reconstructed by our method. The specifics for comparison in frame 1 are shown within the red lines, and those in frame 2 are shown within the white lines.
Fig. 27
Fig. 27 SSIM values as a function of the camera number at two adjacent frames reconstructed by the three methods.
Fig. 28
Fig. 28 Experimental SAPIV velocity vector field for the cylinder wake flow with an iso-vorticity contour 0.4.

Tables (3)

Tables Icon

Table 1 Parameters of six simulated particle fields.

Tables Icon

Table 2 Comparison of Q values given by the three methods.

Tables Icon

Table 3 Calibration errors of each camera.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I S A k = 1 N i=1 N I F P ki
{ x 0 = (i,j,k)S if(i,j,k) / (i,j,k)S f(i,j,k) i=x±4 y 0 = (i,j,k)S jf(i,j,k) / (i,j,k)S f(i,j,k) j=y±4 z 0 = (i,j,k)S kf(i,j,k) / (i,j,k)S f(i,j,k) k=z±4
SSIM( U 1 , U 2 )= (2 μ 1 μ 2 + C 1 )(2 σ 1,2 + C 2 ) ( μ 1 2 + μ 2 2 + C 1 )( σ 1 2 + σ 2 2 + C 2 ) ,
d= u v w = 8KR l exp(( R l ))
Q= X,Y,Z E r (X,Y,Z) E s (X,Y,Z) [ X,Y,Z E r 2 (X,Y,Z) X,Y,Z E s 2 (X,Y,Z) ] 1/2

Metrics