Abstract

The trench-assisted multimode fiber TA-OM4 is used as a sensing fiber to achieve a higher signal-to-noise (SNR) in Brillouin optical time domain sensors, due to its high stimulated Brillouin threshold and high modulation instability threshold. The Brillouin gain spectrum (BGS), stimulated Brillouin scattering (SBS) and modulation instability (MI) thresholds of TA-OM4 at 1550 nm are characterized and demonstrated theoretically and experimentally. The SNR improvements of TA-OM4 over G655 and G657 at the end of 15.5 km-long fibers, which are respectively 1.1 dB and 2.3 dB are verified experimentally. We achieve a temperature uncertainty of 0.3°C in 15.5 km TA-OM4 with 5 m spatial resolution by use of a Brillouin optical time domain reflectometry (BOTDR) sensor. The good bend resistance and high SBS and MI thresholds of TA-OM4 with better SNR improvements over SMFs works at the extreme bending conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis

Pengbai Xu, Yongkang Dong, Juwang Zhang, Dengwang Zhou, Taofei Jiang, Jinlong Xu, Hongying Zhang, Tao Zhu, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 23(17) 22714-22722 (2015)

Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core

Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 20(10) 11083-11090 (2012)

Novel scanning method for distortion-free BOTDA measurements

Alejandro Dominguez-Lopez, Zhisheng Yang, Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Luc Thevenaz, and Miguel Gonzalez-Herraez
Opt. Express 24(10) 10188-10204 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  2. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
    [Crossref]
  3. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  4. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
    [Crossref]
  5. P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
    [Crossref] [PubMed]
  6. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  7. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
    [Crossref]
  8. D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
    [Crossref]
  9. P. Lenke and N. Nöther, “Stimulated Brillouin scattering in graded index multimode optical fiber by excitation of the fundamental mode only,” Proc. SPIE 6582(13), 658213(2007).
    [Crossref]
  10. A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22(14), 17480–17489 (2014).
    [Crossref] [PubMed]
  11. D. Molin, M. Bigot, and P. Sillard, “Trench-assisted bend-resistant OM4 multimode fibers,” in International Wire and Cable Symposium, Proc. the 59th IWCS/IICIT, 439–443 (2014).
  12. G. Ren, Z. Lin, S. Zheng, and S. Jian, “Resonant coupling in trenched bend-insensitive optical fiber,” Opt. Lett. 38(5), 781–783 (2013).
    [Crossref] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic, 2006).
  14. Y. Xu, M. Ren, Y. Lu, P. Lu, P. Lu, X. Bao, L. Wang, Y. Messaddeq, and S. LaRochelle, “Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber,” Opt. Lett. 41(6), 1138–1141 (2016).
    [Crossref] [PubMed]
  15. W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
    [Crossref]
  16. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  17. W. Lin, Z. Yang, X. Hong, S. Wang, and J. Wu, “Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers,” Opt. Express 25(7), 7604–7615 (2017).
    [Crossref] [PubMed]
  18. M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
    [Crossref]
  19. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
    [Crossref] [PubMed]
  20. C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
    [Crossref]
  21. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation character-istics using brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  22. C. Yang, M. Wang, M. Tang, H. Wu, C. Zhao, T. Liu, S. Fu, and W. Tong, “Link optimized few-mode fiber Raman distributed temperature sensors,” Appl. Opt. 57(24), 6923–6926 (2018).
    [Crossref] [PubMed]
  23. M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
    [Crossref] [PubMed]
  24. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013).
    [Crossref] [PubMed]
  25. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  26. D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

2016 (1)

2015 (3)

2014 (2)

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22(14), 17480–17489 (2014).
[Crossref] [PubMed]

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
[Crossref]

2013 (3)

2012 (1)

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

2011 (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

2010 (1)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

2009 (1)

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
[Crossref]

2007 (1)

P. Lenke and N. Nöther, “Stimulated Brillouin scattering in graded index multimode optical fiber by excitation of the fundamental mode only,” Proc. SPIE 6582(13), 658213(2007).
[Crossref]

2000 (1)

1999 (1)

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

1997 (1)

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1989 (1)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation character-istics using brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1975 (1)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Alem, M.

Ba, D.

Bao, X.

Bartelt, H.

Bernini, R.

Bolognini, G.

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
[Crossref]

Chang, L.

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Chen, L.

Chen, W.

Culshaw, B.

D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

Dang, Y.

Dong, Y.

Donlagic, D.

D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

Duparré, M.

Flamm, D.

Fu, S.

Harris, J.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hartung, A.

He, Z.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

Heiblum, M.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Hong, X.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation character-istics using brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

Jian, S.

Jiang, T.

Jiao, W.

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Ke, W. W.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
[Crossref]

Koyamad, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

LaRochelle, S.

Lenke, P.

P. Lenke and N. Nöther, “Stimulated Brillouin scattering in graded index multimode optical fiber by excitation of the fundamental mode only,” Proc. SPIE 6582(13), 658213(2007).
[Crossref]

Li, C.

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Li, H.

Li, M.

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Liao, R.

Lin, W.

Lin, Z.

Liu, D.

Liu, T.

Lorenz, A.

Lu, P.

Lu, Y.

Y. Xu, M. Ren, Y. Lu, P. Lu, P. Lu, X. Bao, L. Wang, Y. Messaddeq, and S. LaRochelle, “Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber,” Opt. Lett. 41(6), 1138–1141 (2016).
[Crossref] [PubMed]

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Lu, Z.

Messaddeq, Y.

Minardo, A.

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nöther, N.

P. Lenke and N. Nöther, “Stimulated Brillouin scattering in graded index multimode optical fiber by excitation of the fundamental mode only,” Proc. SPIE 6582(13), 658213(2007).
[Crossref]

Pasquale, F. D.

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
[Crossref]

Ren, G.

Ren, M.

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Schröter, S.

Schulze, C.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Shum, P. P.

Song, Y.

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Soto, M. A.

Tang, M.

Tang, X.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation character-istics using brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Thévenaz, L.

Tong, W.

Wang, B.

Wang, F.

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Wang, L.

Wang, M.

Wang, S.

Wang, X. J.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
[Crossref]

Wu, H.

Wu, J.

Xu, J.

Xu, P.

Xu, X. L.

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Xu, Y.

Yang, C.

Yang, Z.

Zeni, L.

Zhang, H.

Zhang, J.

Zhang, X.

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

Zhao, C.

Zhao, Z.

Zheng, S.

Zhou, D.

Zhu, T.

Zou, W.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

C. Li, F. Wang, Y. Lu, and X. Zhang, “SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection,” Electron. Lett. 48(18), 1139–1141 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 305–314 (2014).
[Crossref]

IEEE Photonics J. (1)

M. Li, W. Jiao, X. L. Xu, Y. Song, and L. Chang, “A method for peak seeking of BOTDR based on the incomplete Brillouin spectrum,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7), 450–452 (2009).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

J. Lightwave Technol. (5)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamad, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[Crossref]

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation character-istics using brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Opt. Express (8)

M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
[Crossref] [PubMed]

C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21(3), 3170–3181 (2013).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
[Crossref] [PubMed]

W. Lin, Z. Yang, X. Hong, S. Wang, and J. Wu, “Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers,” Opt. Express 25(7), 7604–7615 (2017).
[Crossref] [PubMed]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22(14), 17480–17489 (2014).
[Crossref] [PubMed]

P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

P. Lenke and N. Nöther, “Stimulated Brillouin scattering in graded index multimode optical fiber by excitation of the fundamental mode only,” Proc. SPIE 6582(13), 658213(2007).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Other (2)

D. Molin, M. Bigot, and P. Sillard, “Trench-assisted bend-resistant OM4 multimode fibers,” in International Wire and Cable Symposium, Proc. the 59th IWCS/IICIT, 439–443 (2014).

G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Refractive index profile of TA-OM4. (b) Calculated electric fields of guided LP mode LP01, LP11 and LP21 at 1550 nm in TA-OM4.
Fig. 2
Fig. 2 The 2-D mode profiles of acoustic modes and LP01.
Fig. 3
Fig. 3 Numerical and experimental results of BGS of TA-OM4. The inset figures are the field patterns of the two acoustic modes.
Fig. 4
Fig. 4 The calculated SNRI of TA-OM4 over SMFs in BOTDR sensor.
Fig. 5
Fig. 5 Experimental setup of BOTDR using three sensing fibers (G655/G657/TA-OM4). PC, polarization controller; PS, polarization scrambler; EDFA, erbium-doped fiber amplifier. ESA, electrical spectrum analyzer. Inset 1 shows the fiber being wound around a cylindrical metal rod.
Fig. 6
Fig. 6 The measured Brillouin peak power trace of TA-OM4, G655 and G657.
Fig. 7
Fig. 7 (a) Measured Brillouin signals with different radius for G657. (b) Measured Brillouin signals with different radius for TA-OM4. (c) 10 loops imposed on TA-OM4 with different bend radius.
Fig. 8
Fig. 8 Temperature measurement results of TA-OM4. (a) The BGS of the 15.5 km fiber when oven temperature is 60°C (b) BFS of the fiber in the range from 14340 m to 14370 m when oven temperature is 60°C (c) Temperature coefficients calibration.

Tables (1)

Tables Icon

Table 1 Main Parameters of Four Fibers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 E(x,y)+ ( 2π λ ) 2 ( n 2 n eff 2 )E(x,y)=0
2 u(x,y)+( ω a 2 v l 2 β a 2 )u(x,y)=0
ν B = 2 n eff i v eff k λ
P SBS _th 21 K A eff g B L eff
P MI_th = σ crit 2γ L eff
σ crit =ln( R D 2π| β 2 | S n γ L eff σ crit )
SNRI( z )= P BTA ( z ) e α TA z / P BSMF ( z ) e α SMF z
P B (z)= P P αScτ e αz /(2 n eff )

Metrics