Abstract

With the rapid development of cloud services, data-center applications and the Internet of Things, short-reach communications have attracted much more attention in recent years. 4-level pulse amplitude modulation (PAM4) is a promising modulation format to provide both high data rate and relatively low cost for short-reach optical interconnects. In this paper, a joint clock recovery and feed-forward equalization algorithm (CR-FFE) is proposed to simultaneously eliminate the inter-symbol interference (ISI) and track large sampling clock offset (SCO) in PAM4 transmission. The algorithm estimates timing error according to the difference between two tap coefficients of fractionally spaced equalizers, thus solving the problem of incompatible prerequisites between clock recovery and channel equalization. A 10GHz directly modulated laser (DML) based 50-Gbit/s PAM4 transmission experiment is implemented to investigate the performance of the proposed algorithm. Experimental results show that the proposed CR-FFE algorithm can resist SCO up to 1000 ppm after 40 km standard single-mode fiber (SSMF) transmission under the 2x10−2 SD-FEC BER threshold, which is dramatically improved comparing with that of 20 ppm in traditional CR cascaded by FFE algorithm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-Digital Timing Recovery and Adaptive Equalization for 112 Gbit∕s POLMUX-NRZ-DQPSK Optical Coherent Receivers

Xian Zhou, Xue Chen, Weiqing Zhou, Yangyang Fan, Hai Zhu, and Zhiyu Li
J. Opt. Commun. Netw. 2(11) 984-990 (2010)

100 Gbit/s VSB-PAM-n IM/DD transmission system based on 10 GHz DML with optical filtering and joint nonlinear equalization

Jiao Zhang, Jianjun Yu, Xinying Li, Yiran Wei, Kaihui Wang, Li Zhao, Wen Zhou, Miao Kong, Xiaolong Pan, Bo Liu, and Xiangjun Xin
Opt. Express 27(5) 6098-6105 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Zhong, X. Zhou, Y. Wang, T. Gui, Y. Yang, J. Yuan, L. Wang, W. Chen, H. Zhang, J. Man, L. Zeng, C. Yu, A. P. T. Lau, and C. Lu, “Recent Advances in Short Reach Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu2D.7.
    [Crossref]
  2. J. C. Cartledge and A. S. Karar, “100 Gb/s Intensity Modulation and Direct Detection,” J. Lightwave Technol. 32(16), 2809–2814 (2014).
    [Crossref]
  3. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  4. I. Lyubomirsky and W. A. Ling, “Advanced Modulation for Datacenter Interconnect,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4J.3.
    [Crossref]
  5. Z. Wan, J. Li, L. Shu, M. Luo, X. Li, S. Fu, and K. Xu, “Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF,” Opt. Express 26(8), 10631–10642 (2018).
    [Crossref] [PubMed]
  6. Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224 Gb/s Optical Carrier-Assisted Nyquist 16-QAM Half-Cycle Single-Sideband Direct Detection Transmission over 160 km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
    [Crossref]
  7. L. Tao, Y. Wang, J. Xiao, and N. Chi, “Enhanced performance of 400 Gb/s DML-based CAP systems using optical filtering technique for short reach communication,” Opt. Express 22(24), 29331–29339 (2014).
    [Crossref] [PubMed]
  8. J. L. Wei, C. Sanchez, and E. Giacoumidis, “Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects,” Opt. Lett. 42(19), 3860–3863 (2017).
    [Crossref] [PubMed]
  9. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s Transmission Over 80-km SMF Using Direct-Detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  10. N. Eiselt, H. Griesser, J. Wei, A. Dochhan, M. Eiselt, J. Elbers, J. J. V. Olmos, and I. T. Monroy, “Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1G.3.
    [Crossref]
  11. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  12. IEEE Standard P802.3bs 200 Gb/s and 400 Gb/s., [online] Available: http://www.ieee802.org/3/bs/index.html .
  13. D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications,” Opt. Express 23(2), 991–997 (2015).
    [Crossref] [PubMed]
  14. N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
    [Crossref]
  15. H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2I.3.
    [Crossref]
  16. K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
    [Crossref]
  17. F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
    [Crossref] [PubMed]
  18. M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
    [Crossref] [PubMed]
  19. N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
    [Crossref]
  20. G. Chen, J. Du, L. Sun, L. Zheng, K. Xu, H. K. Tsang, X. Chen, G. T. Reed, and Z. He, “Machine Learning Adaptive Receiver for PAM-4 Modulated Optical Interconnection Based on Silicon Microring Modulator,” J. Lightwave Technol. 36(18), 4106–4113 (2018).
    [Crossref]
  21. C. Ye, D. Zhang, X. Huang, H. Feng, and K. Zhang, “Demonstration of 50Gbps IM/DD PAM4 PON over 10GHz class optics using neural network based nonlinear equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.2.B.
    [Crossref]
  22. J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
    [Crossref]
  23. N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
    [Crossref]
  24. S. Song, “Fractionally spaced equalization for high-speed links,” PhD diss., Massachusetts Institute of Technology (2011).
  25. M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
    [Crossref]
  26. X. Zhou, K. Zhong, J. Huo, L. Gao, Y. Wang, L. Wang, Y. Yang, J. Yuan, K. Long, L. Zeng, A. P. T. Lau, and C. Lu, “112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier,” Opt. Express 24(15), 17359–17371 (2016).
    [Crossref] [PubMed]
  27. F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
    [Crossref]
  28. N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J. P. Elbers, “Performance Comparison of 112-Gb/s DMT, Nyquist PAM4, and Partial-Response PAM4 for Future 5G Ethernet-Based Fronthaul Architecture,” J. Lightwave Technol. 36(10), 1807–1814 (2018).
    [Crossref]
  29. X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-Digital Timing Recovery and Adaptive Equalization for 112 Gbit/s POLMUX-NRZ-DQPSK Optical Coherent Receivers,” J. Opt. Commun. Netw. 2(11), 984–990 (2010).
    [Crossref]
  30. H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
    [Crossref]
  31. J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
    [Crossref]
  32. L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
    [Crossref]
  33. R. D. Nowak and B. D. Van Veen, “Volterra Filter Equalization: A Fixed Point Approach,” IEEE Trans. Signal Process. 45(2), 377–388 (1997).
    [Crossref]
  34. V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process. Mag. 8(3), 10–26 (1991).
    [Crossref]
  35. S. H. Bae, H. Kim, and Y. C. Chung, “Transmission of 51.56-Gb/s OOK signal using 1.55-μm directly modulated laser and duobinary electrical equalizer,” Opt. Express 24(20), 22555–22562 (2016).
    [Crossref] [PubMed]

2018 (4)

2017 (6)

2016 (4)

2015 (2)

2014 (2)

2010 (1)

2003 (1)

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

1997 (1)

R. D. Nowak and B. D. Van Veen, “Volterra Filter Equalization: A Fixed Point Approach,” IEEE Trans. Signal Process. 45(2), 377–388 (1997).
[Crossref]

1993 (1)

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

1991 (1)

V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process. Mag. 8(3), 10–26 (1991).
[Crossref]

1988 (1)

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

1986 (1)

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

Antonelli, C.

Bae, S. H.

Bao, Y.

Cartledge, J. C.

Chen, F.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Chen, G.

Chen, X.

Chen, Z.

Chi, N.

Chung, Y. C.

Deng, L.

Dochhan, A.

Donnelly, K. S.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Dorman, G.

Du, J.

Eiselt, M.

Eiselt, M. H.

Eiselt, N.

Elbers, J. P.

El-Fiky, E.

Erup, L.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

Fan, Y.

Fu, S.

Gao, C.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Gao, F.

Gao, L.

Gardner, F.

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

Gardner, F. M.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

Giacoumidis, E.

Gorshtein, A.

Griesser, H.

Harris, R. A.

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

He, Z.

Ho, A.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Hohenleitner, R.

Hong, X.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Horowitz, M. A.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Hu, W.

Huang, X.

Huo, J.

Karar, A. S.

Karinou, F.

Kim, D.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Kim, H.

Kollipara, R. T.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Lau, A. P. T.

Li, J.

Li, W.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Li, X.

Li, Y.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Li, Z.

Liu, D.

Liu, G. N.

Long, K.

Lu, C.

Luo, M.

Mao, Y.

Mathews, V. J.

V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process. Mag. 8(3), 10–26 (1991).
[Crossref]

Mecozzi, A.

Meyr, H.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

Monroy, I. T.

Morsy-Osman, M.

Muench, D.

Neumeyr, C.

Nowak, R. D.

R. D. Nowak and B. D. Van Veen, “Volterra Filter Equalization: A Fixed Point Approach,” IEEE Trans. Signal Process. 45(2), 377–388 (1997).
[Crossref]

Oerder, M.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

Olmos, J. J. V.

Ortsiefer, M.

Plant, D. V.

Prodaniuc, C.

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

Qiang, Z.

Qiu, K.

Reed, G. T.

Sadot, D.

Sanchez, C.

Shtaif, M.

Shu, L.

Song, Y.

Sonkin, E.

Stojanovic, N.

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

Stojanovic, V.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Stonecypher, W. F.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Sun, L.

Tang, M.

Tao, L.

Thrush, T. P.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Tsang, G.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Tsang, H. K.

Van Veen, B. D.

R. D. Nowak and B. D. Van Veen, “Volterra Filter Equalization: A Fixed Point Approach,” IEEE Trans. Signal Process. 45(2), 377–388 (1997).
[Crossref]

Vidal, O.

Wan, Z.

Wang, L.

Wang, Y.

Wei, J.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

Wei, J. L.

Werner, C. W.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Wu, J.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Xiao, J.

Xie, C.

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

Xin, H.

Xu, K.

Xu, X.

Yang, Q.

Yang, Y.

Yi, L.

Yi, X.

Ying, H.

Yuan, J.

Zeng, L.

Zerbe, J. L.

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

Zhang, F.

Zhang, J.

Zhang, K.

Zhang, L.

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s Transmission Over 80-km SMF Using Direct-Detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

Zhang, Q.

Zhang, X.

Zheng, L.

Zhong, K.

Zhong, Q.

Zhou, E.

Zhou, H.

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Zhou, S.

Zhou, W.

Zhou, X.

Zhu, H.

Zhu, M.

Zhu, Y.

Zhuge, Q.

Zou, K.

Zuo, T.

IEEE J. Solid-State Circuits (1)

J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10-Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits 38(12), 2121–2130 (2003).
[Crossref]

IEEE Signal Process. Mag. (1)

V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Process. Mag. 8(3), 10–26 (1991).
[Crossref]

IEEE Trans. Commun. (3)

L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in digital modems. II. Implementation and performance,” IEEE Trans. Commun. 41(6), 998–1008 (1993).
[Crossref]

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

IEEE Trans. Signal Process. (1)

R. D. Nowak and B. D. Van Veen, “Volterra Filter Equalization: A Fixed Point Approach,” IEEE Trans. Signal Process. 45(2), 377–388 (1997).
[Crossref]

J. Lightwave Technol. (7)

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J. P. Elbers, “Performance Comparison of 112-Gb/s DMT, Nyquist PAM4, and Partial-Response PAM4 for Future 5G Ethernet-Based Fronthaul Architecture,” J. Lightwave Technol. 36(10), 1807–1814 (2018).
[Crossref]

J. C. Cartledge and A. S. Karar, “100 Gb/s Intensity Modulation and Direct Detection,” J. Lightwave Technol. 32(16), 2809–2814 (2014).
[Crossref]

Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224 Gb/s Optical Carrier-Assisted Nyquist 16-QAM Half-Cycle Single-Sideband Direct Detection Transmission over 160 km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
[Crossref]

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s Transmission Over 80-km SMF Using Direct-Detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

G. Chen, J. Du, L. Sun, L. Zheng, K. Xu, H. K. Tsang, X. Chen, G. T. Reed, and Z. He, “Machine Learning Adaptive Receiver for PAM-4 Modulated Optical Interconnection Based on Silicon Microring Modulator,” J. Lightwave Technol. 36(18), 4106–4113 (2018).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (9)

X. Zhou, K. Zhong, J. Huo, L. Gao, Y. Wang, L. Wang, Y. Yang, J. Yuan, K. Long, L. Zeng, A. P. T. Lau, and C. Lu, “112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier,” Opt. Express 24(15), 17359–17371 (2016).
[Crossref] [PubMed]

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
[Crossref] [PubMed]

M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
[Crossref] [PubMed]

S. H. Bae, H. Kim, and Y. C. Chung, “Transmission of 51.56-Gb/s OOK signal using 1.55-μm directly modulated laser and duobinary electrical equalizer,” Opt. Express 24(20), 22555–22562 (2016).
[Crossref] [PubMed]

D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications,” Opt. Express 23(2), 991–997 (2015).
[Crossref] [PubMed]

L. Tao, Y. Wang, J. Xiao, and N. Chi, “Enhanced performance of 400 Gb/s DML-based CAP systems using optical filtering technique for short reach communication,” Opt. Express 22(24), 29331–29339 (2014).
[Crossref] [PubMed]

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

Z. Wan, J. Li, L. Shu, M. Luo, X. Li, S. Fu, and K. Xu, “Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF,” Opt. Express 26(8), 10631–10642 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Other (10)

IEEE Standard P802.3bs 200 Gb/s and 400 Gb/s., [online] Available: http://www.ieee802.org/3/bs/index.html .

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2I.3.
[Crossref]

C. Ye, D. Zhang, X. Huang, H. Feng, and K. Zhang, “Demonstration of 50Gbps IM/DD PAM4 PON over 10GHz class optics using neural network based nonlinear equalization,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper W.2.B.
[Crossref]

J. Wei, L. Zhang, C. Prodaniuc, N. Stojanović, and C. Xie, “Linear Pre-Equalization Techniques for Short Reach Single Lambda 225 Gb/s PAM IMDD Systems,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 Transmission with BER Below KP4-FEC/EFEC and at Least 14 dB Link Budget,” in Proceedings of European Conference on Optical Communication (ECOC) (2018).
[Crossref]

S. Song, “Fractionally spaced equalization for high-speed links,” PhD diss., Massachusetts Institute of Technology (2011).

N. Eiselt, H. Griesser, J. Wei, A. Dochhan, M. Eiselt, J. Elbers, J. J. V. Olmos, and I. T. Monroy, “Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1G.3.
[Crossref]

K. Zhong, X. Zhou, Y. Wang, T. Gui, Y. Yang, J. Yuan, L. Wang, W. Chen, H. Zhang, J. Man, L. Zeng, C. Yu, A. P. T. Lau, and C. Lu, “Recent Advances in Short Reach Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu2D.7.
[Crossref]

I. Lyubomirsky and W. A. Ling, “Advanced Modulation for Datacenter Interconnect,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4J.3.
[Crossref]

H. Zhou, Y. Li, C. Gao, W. Li, X. Hong, and J. Wu, “Clock Recovery and Adaptive Equalization for 50Gbit/s PAM4 Transmission,” in Asia Communications and Photonics Conference (ACP) (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The structure of traditional CR cascaded by FFE (r: received signals; x: input signals of FFE; y: output signals of FFE; k: the current moment; 1s: one sample per symbol; 2s: two samples per symbol; TED: timing error detector; LF: loop filter; NCO: numerically controlled oscillator; m: base-point index; u: fractional interval).
Fig. 2
Fig. 2 The structure of proposed CR-FFE.
Fig. 3
Fig. 3 The tap weights when (a) sampling occurs late (b) sampling occurs in right position (c) sampling occurs early.
Fig. 4
Fig. 4 The tap weights of FFE and CR-FFE after 20 km transmission where (a) SCO = 0 ppm (b) SCO = 2 ppm (c) SCO = 4 ppm (d) SCO = 6 ppm. A portion of the fractional interval when SCO = 1000 ppm after 2 km transmission (e) with CR and (f) with CR-FFE; and after 20 km transmission (g) with CR and (h) with CR-FFE.
Fig. 5
Fig. 5 The convergence of (a) traditional CR cascaded by FFE and (b) CR-FFE when SCO = 0 ppm after back-to-back transmission; (c) traditional CR cascaded by FFE and (d) CR-FFE when SCO = 1000 ppm after back-to-back transmission; (e) traditional CR cascaded by FFE and (f) CR-FFE when SCO = 1000 ppm after 20 km transmission.
Fig. 6
Fig. 6 Experimental setup. The eye diagrams of (a) electrical PAM4 signals and (b) optical PAM4 signals in back-to-back system. PPG: pulse pattern generator, VOA: variable optical attenuator, EDFA: erbium-doped fiber amplifier, OPBF: optical passband filter, DSO: digital storage oscilloscope, PWm: power meter.
Fig. 7
Fig. 7 BER performance as a function of taps number (a) when SCO = 0 ppm and (b) after 20 km transmission under different SCO conditions. (S. I: Scheme I; S. II: Scheme II)
Fig. 8
Fig. 8 (a) The BER performance vs SCO at ROP = −8 dBm; (b) the tap weights and (c) fractional interval of proposed CR-FFE after 40 km transmission when SCO = 1000 ppm.
Fig. 9
Fig. 9 (a) The BER performance vs transmission distance for different schemes. (b) The tolerance of SCO vs transmission distance for different schemes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y 1s (k+1 n 2 )= i=n n h i,k x 2s (2k+2ni)
e m k ={ y 1s (k+1 n 2 ) x training , Training Mode y 1s (k+1 n 2 ) x 2s (2k+2n), DD Mode
e t k = h 1,k h 1,k
b(m)= j 1 =0 N 1 1 l 1 ( j 1 ) a(m j 1 )+ j 1 =0 N 2 1 j 2 =0 j 1 l 2 ( j 1 , j 2 ) a(m j 1 )a(m j 2 ) + j 1 =0 N 3 1 j 2 =0 j 1 j 3 =0 j 2 l 3 ( j 1 , j 2 , j 3 ) a(m j 1 )a(m j 2 )a(m j 3 )

Metrics