Abstract

We demonstrate frequency modulation (FM) in an external cavity (EC) III-V/silicon laser, comprising a reflective semiconductor optical amplifier (RSOA) and a silicon nitride (SiN) waveguide vertically coupled to a 2D silicon photonic crystal (PhC) cavity. The PhC cavity acts as a tunable narrowband reflector giving wavelength selectivity. The FM was achieved by thermo-optical modulation of the reflector via a p-n junction. Single-mode operation was ensured by the short cavity length, overlapping only one longitudinal laser mode with the reflector. We investigate the effect of reflector modulation theoretically and experimentally and predict a substantial tracking of the resonator by the laser frequency with very small intensity modulation (IM).

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz Quantum Cascade Lasers based on two-dimensional photonic crystal resonators

Lorenzo Sirigu, Romain Terazzi, Maria. I. Amanti, Marcella Giovannini, Jérôme Faist, L. Andrea Dunbar, and Romuald Houdré
Opt. Express 16(8) 5206-5217 (2008)

Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity

Takasumi Tanabe, Katsuhiko Nishiguchi, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 17(25) 22505-22513 (2009)

Vertical junction silicon microdisk modulators and switches

Michael R. Watts, William A. Zortman, Douglas C. Trotter, Ralph W. Young, and Anthony L. Lentine
Opt. Express 19(22) 21989-22003 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
    [Crossref]
  2. J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
    [Crossref]
  3. S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
    [Crossref]
  4. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
    [Crossref]
  5. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
    [Crossref]
  6. V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
    [Crossref]
  7. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003).
    [Crossref] [PubMed]
  8. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
    [Crossref] [PubMed]
  9. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
    [Crossref] [PubMed]
  10. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304(2010).
    [Crossref] [PubMed]
  11. J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16, 18340–18344 (2008).
    [Crossref] [PubMed]
  12. F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. Fedeli, P. Dumon, L. Vivien, T. Krauss, G. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
    [Crossref] [PubMed]
  13. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref] [PubMed]
  14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [Crossref] [PubMed]
  15. T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.
  16. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J.-H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21, 32425–32431 (2013).
    [Crossref]
  17. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009).
    [Crossref] [PubMed]
  18. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
    [Crossref] [PubMed]
  19. A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
    [Crossref]
  20. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
    [Crossref] [PubMed]
  21. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
    [Crossref]
  22. M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
    [Crossref]
  23. E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
    [Crossref]
  24. E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
    [Crossref]
  25. J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
    [Crossref] [PubMed]
  26. A. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
    [Crossref]
  27. S. Slepneva, B. Kelleher, B. O’Shaughnessy, S. P. Hegarty, A. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
    [Crossref] [PubMed]
  28. A. A. Liles, K. Debnath, and L. O’Faolain, “Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector,” Opt. Lett. 41, 894–897 (2016).
    [Crossref] [PubMed]
  29. K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38, 154–156 (2013).
    [Crossref] [PubMed]
  30. K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
    [Crossref]
  31. S. Iadanza, A. P. Bakoz, P. K. J. Singaravelu, D. Panettieri, S. A. Schulz, G. C. R. Devarapu, S. Guerber, C. Baudot, F. Boeuf, S. P. Hegarty, and L. O’Faolain, “Thermally stable hybrid cavity laser based on silicon nitride gratings,” Appl. Opt. 57, E218–E223 (2018).
    [Crossref] [PubMed]

2018 (2)

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

S. Iadanza, A. P. Bakoz, P. K. J. Singaravelu, D. Panettieri, S. A. Schulz, G. C. R. Devarapu, S. Guerber, C. Baudot, F. Boeuf, S. P. Hegarty, and L. O’Faolain, “Thermally stable hybrid cavity laser based on silicon nitride gratings,” Appl. Opt. 57, E218–E223 (2018).
[Crossref] [PubMed]

2016 (1)

2014 (1)

J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
[Crossref] [PubMed]

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
[Crossref] [PubMed]

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

2011 (2)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

2008 (2)

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16, 18340–18344 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[Crossref] [PubMed]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

2005 (2)

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[Crossref]

A. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[Crossref]

2004 (1)

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

2003 (1)

1997 (1)

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

1996 (1)

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

1995 (1)

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Akiyama, T.

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Asghari, M.

Bajwa, N.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Bakoz, A.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Bakoz, A. P.

Baudot, C.

Beggs, D. M.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

Bennett, D. B.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Boeuf, F.

Brimont, A.

Brown, E. R.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Cairns, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

Chen, Y.

J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
[Crossref] [PubMed]

Chu, T.

Chuang, H.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Culjat, M. O.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Cunningham, J. E.

Davidov, D.

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

Deasy, K.

Debnath, K.

Devarapu, G. C. R.

Djordjevic, S. S.

Dong, F.

Dong, P.

Dumon, P.

Ebe, H.

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Fan, Z. F.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Fedeli, J.

Feng, D.

Feng, N.-N.

Ferrera, M.

Frenkel, A.

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

Fujioka, N.

Fujiwara, N.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Galli, M.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

Gardes, F.

Gardes, F. Y.

Golosovsky, M.

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

Gonzalez-Fernandez, A.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Grundfest, W. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Guerber, S.

Habruseva, T.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Hanson, R. K.

Hegarty, J.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Hegarty, S. P.

Heuck, M.

J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
[Crossref] [PubMed]

Hu, C.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Huang, C.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Hubschman, J.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Huyet, G.

Iadanza, S.

Ishizaka, M.

Istrate, E.

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[Crossref]

Jeffries, J. B.

Jeong, S.-H.

Kakitsuka, T.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Kealey, C. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Kelleher, B.

Kim, G.

Krauss, T.

Krauss, T. F.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
[Crossref] [PubMed]

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

Krishnamoorthy, A. V.

Kuo, F.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Kurahashi, T.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
[Crossref] [PubMed]

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Lee, J.-H.

Lentine, A. L.

Li, G.

Li, H.

Liang, H.

Liao, C.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Lidzey, D. G.

Liles, A.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Liles, A. A.

Lin, J.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Lin, S.

Lipson, M.

Liu, X.

Logan, R. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

Lu, C.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Luo, Y.

Mahgerefteh, D.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Manipatruni, S.

Marris-Morini, D.

Martí, J.

Matsui, Y.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Matsuo, S.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

McCallion, K.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Morito, K.

Mork, J.

J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
[Crossref] [PubMed]

Morton, P. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

Neve-Oz, Y.

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

O’Faolain, L.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

S. Iadanza, A. P. Bakoz, P. K. J. Singaravelu, D. Panettieri, S. A. Schulz, G. C. R. Devarapu, S. Guerber, C. Baudot, F. Boeuf, S. P. Hegarty, and L. O’Faolain, “Thermally stable hybrid cavity laser based on silicon nitride gratings,” Appl. Opt. 57, E218–E223 (2018).
[Crossref] [PubMed]

A. A. Liles, K. Debnath, and L. O’Faolain, “Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector,” Opt. Lett. 41, 894–897 (2016).
[Crossref] [PubMed]

K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38, 154–156 (2013).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
[Crossref] [PubMed]

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. Fedeli, P. Dumon, L. Vivien, T. Krauss, G. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

O’Gorman, J.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

O’Shaughnessy, B.

Oohashi, H.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Ozbay, E.

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

Pan, C.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Panettieri, D.

Park, J.-W.

Park, M.

Phelan, P.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Portalupi, S. L.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

Qian, W.

Raj, K.

Rasigade, G.

Reed, G.

Reed, G. T.

Rieker, G. B.

Robert, P.

Sanchis, P.

Sargent, E. H.

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[Crossref]

Schilt, S.

Schmidt, B.

Schulz, S. A.

Segawa, T.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Sekiguchi, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
[Crossref] [PubMed]

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Shafiiha, R.

Shakya, J.

Shi, J.

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

Shibata, Y.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Shtengel, G. E.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

Shubin, I.

Singaravelu, P. K. J.

Singh, R. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Slepneva, S.

Steffan, A. G.

Stojadinovic, A.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Suzuki, H.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

Tanaka, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
[Crossref] [PubMed]

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Tanaka, Y.

Tanbun-Ek, T.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Tayebati, P.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

Taylor, Z. D.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Temelkuran, B.

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

Tewari, P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Thacker, H.

Thévenaz, L.

Trotter, D. C.

Turaev, D.

A. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[Crossref]

Tzeng, L. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

Viktorov, E. A.

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Vivien, L.

Vladimirov, A.

Watts, M. R.

Weldon, V.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Welna, K.

K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38, 154–156 (2013).
[Crossref] [PubMed]

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

White, T. P.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

Xu, Q.

Yadvish, R. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

Yao, J.

Yasaka, H.

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

You, J.-B.

Young, R. W.

Zheng, X.

Zortman, W. A.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[Crossref]

Electron. Lett. (1)

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm aseDFB laser,” Electron. Lett. 33, 310–311 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel dispersion-adapted photonic crystal cavity with improved disorder stability,” IEEE J. Quantum Electron. 48, 1177–1183 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photonics Technol. Lett. 21, 24–26 (2009).
[Crossref]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photonics Technol. Lett. 18, 385–387 (2006).
[Crossref]

J. Lin, C. Lu, H. Chuang, F. Kuo, J. Shi, C. Huang, and C. Pan, “Photonic generation and detection of w-band chirped millimeter-wave pulses for radar,” IEEE Photonics Technol. Lett. 24, 1437–1439 (2012).
[Crossref]

S. Matsuo, T. Kakitsuka, T. Segawa, N. Fujiwara, Y. Shibata, H. Oohashi, H. Yasaka, and H. Suzuki, “Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser,” IEEE Photonics Technol. Lett. 20, 294–296 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011).
[Crossref]

Light. Sci. Appl. (1)

A. Bakoz, A. Liles, A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light. Sci. Appl. 7, 39 (2018).
[Crossref]

Opt. Express (11)

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J.-H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21, 32425–32431 (2013).
[Crossref]

T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009).
[Crossref] [PubMed]

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).
[Crossref] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304(2010).
[Crossref] [PubMed]

J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16, 18340–18344 (2008).
[Crossref] [PubMed]

F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. Fedeli, P. Dumon, L. Vivien, T. Krauss, G. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[Crossref] [PubMed]

S. Slepneva, B. Kelleher, B. O’Shaughnessy, S. P. Hegarty, A. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[Crossref]

Phys. Rev. B (1)

M. Golosovsky, Y. Neve-Oz, D. Davidov, and A. Frenkel, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004).
[Crossref]

Phys. Rev. Lett. (1)

J. Mork, Y. Chen, and M. Heuck, “Photonic crystal fano laser: Terahertz modulation and ultrashort pulse generation,” Phys. Rev. Lett. 113, 163901 (2014).
[Crossref] [PubMed]

Sens. Actuators, B (1)

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57 μm,” Sens. Actuators, B 29, 101–107 (1995).
[Crossref]

Other (1)

T. Akiyama, S. Tanaka, T. Kurahashi, H. Ebe, and S. Sekiguchi, “A novel transmitter leveraging high-speed ultralow-power modulation of a Si microring modulator by eliminating tuning power,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), (Optical Society of America, 2016), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Laser configuration: III-V InP RSOA and silicon PhC cavity resonant reflector. Separate voltage to RSOA and modulating voltage to p-n junction at PhC cavity. (b) Reflectance band overlaps with one longitudinal mode. Modulation of lasing mode (laser FM) achieved by modulation of the reflectance band.
Fig. 2
Fig. 2 (a) The reflection peak aligned with the longitudinal mode shifts by ΔF and (b) the reflection phase ϕ r = a r c t a n ( 2 π ν / Γ ) occurs across reflection peak and shifts by same amount. (c) The total accumulated phase is the sumof the propagation phase ϕ p r o p = 2 π ν T and the reflection phase. The single mode lasing solution exists at the intersection of the cavity mode m and the total accumulated phase. The solution shifts by Δ ν and exists on the same cavity mode (green points).
3
3 Simulations of the IM vs. g   0 for modulation range of (a) 5 GHz and (b) 20 GHz. Laser output intensity (red) and laser frequency (blue) as a function of reflector shift for modulation range of (c) 5 GHz and (d) 20 GHz. The green dashed lineindicates a perfect linear relationship between the laser and reflector63 frequency, the purple dashed line is the predicted linear relationship by Eq. (6). The solid black lines are the modulation range limits of 5 GHz and 20 GHz (6.88 GHz and 27.5 GHz for reflector). The parameters used for these simulations were: carrier recombination rate γ = 1 GHz, linear attenuation factor κ = 0.08, linewidth enhancement factor α = 3, roundtrip period T = 12.5 ps, reflector bandwidth Γ = 15 GHz, pump parameter g   0 = 3-8 varying for (a) and (b) then applied g   0 of 4.35 for (c) and 5.3 for (d).
Fig. 4
Fig. 4 (a) SEM image of PhC cavity before p-n contact pads addition and (b) microscope image of PhC and p-n contact pads post fabrication.
Fig. 5
Fig. 5 (a) IV curve for p-n junction. (b) Microscope image of needle probes applied to contact pads on sample.
Fig. 6
Fig. 6 Experimental Setup.
Fig. 7
Fig. 7 (a) Single mode operation at ∼1540.5 nm, SMSR ∼30 dB at a pumping current of 50 mA. Inset: Measured LI curve, threshold ∼15 mA. (b) Frequency shift of lasing peak as a function of heating power by heterodyne measurement with TLS.
Fig. 8
Fig. 8 (a) Driving signal input to p-n junction, (b) laser output intensity with IM of -8.7 dB and (c) beating frequency showing FM of the laser giving a frequency shift Δ ν of ∼4 GHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ r = a r c t a n ( 2 π ν Γ ) ( 2 π ν Γ )
ϕ p r o p = 2 π ν F S R
ϕ p r o p + ϕ r = 2 π m
Δ ϕ = ΔF ( 2 π Γ )
ΔF ( 2 π Γ ) + Δ ν ( 2 π Γ ) + Δ ν ( 2 π F S R ) = 0
Δ ν = ΔF [ 1 1 + Γ F S R ]
| Δ ν ( 1 + Γ F S R ) Δ ν | Γ 4 π
Δ ν = F S R 2 π

Metrics