Abstract

We reported the timing jitter reduction of an 882 MHz mode-locked NPE Yb:fiber lasers through active relative intensity noise suppression. The timing jitter spectra measurements based on balanced optical cross-correlation (BOC) technique show a reduction of ~10 dB in the Fourier frequency range from ~3 kHz to ~30 kHz with a unity-gain crossing point of 80 kHz. The results verify the theoretical prediction that the relative intensity noise (RIN) induced timing jitter by self-steepening effect dominates the jitter performance below ~100 kHz. Further comparison with the analytic model shows that the effect of RIN decays below ~3 kHz. Thus, the timing jitter reduction is not obvious at low frequency. To the best of our knowledge, this is the first experimental report on the timing jitter reduction through active RIN suppression in high-repetition-rate mode-locked fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Timing jitter of high-repetition-rate mode-locked fiber lasers

Yan Wang, Haochen Tian, Yuxuan Ma, Youjian Song, and Zhigang Zhang
Opt. Lett. 43(18) 4382-4385 (2018)

Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber

Chur Kim, Kwangyun Jung, Khanh Kieu, and Jungwon Kim
Opt. Express 20(28) 29524-29530 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  2. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref] [PubMed]
  3. J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010).
    [Crossref] [PubMed]
  4. M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
    [Crossref] [PubMed]
  5. J. Zhang, Z. Kong, Y. Liu, A. Wang, and Z. Zhang, “Compact 517 MHz soliton mode-locked Er-doped fiber ring laser,” Photon. Res. 4(1), 27–29 (2016).
    [Crossref]
  6. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [Crossref] [PubMed]
  7. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
    [Crossref] [PubMed]
  8. K. Wu, J. H. Wong, P. Shum, D. R. Lim, V. K. Wong, K. E. Lee, J. Chen, and E. D. Obraztsova, “Timing-jitter reduction of passively mode-locked fiber laser with a carbon nanotube saturable absorber by optimization of cavity loss,” Opt. Lett. 35(7), 1085–1087 (2010).
    [Crossref] [PubMed]
  9. P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
    [Crossref] [PubMed]
  10. J. Shin, K. Jung, Y. Song, and J. Kim, “Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering,” Opt. Express 23(17), 22898–22906 (2015).
    [Crossref] [PubMed]
  11. Y. Wang, H. Tian, Y. Ma, Y. Song, and Z. Zhang, “Timing jitter of high-repetition-rate mode-locked fiber lasers,” Opt. Lett. 43(18), 4382–4385 (2018).
    [Crossref] [PubMed]
  12. H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G. H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
    [Crossref] [PubMed]
  13. T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
    [Crossref] [PubMed]
  14. D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
    [Crossref]
  15. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [Crossref] [PubMed]
  16. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
    [Crossref] [PubMed]
  17. K. Jung and J. Kim, “Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency,” Opt. Lett. 40(3), 316–319 (2015).
    [Crossref] [PubMed]
  18. R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
    [Crossref]
  19. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [Crossref]
  20. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [Crossref] [PubMed]
  21. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
    [Crossref]
  22. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

2016 (2)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

J. Zhang, Z. Kong, Y. Liu, A. Wang, and Z. Zhang, “Compact 517 MHz soliton mode-locked Er-doped fiber ring laser,” Photon. Res. 4(1), 27–29 (2016).
[Crossref]

2015 (3)

2014 (3)

2011 (3)

2010 (3)

2008 (1)

2007 (2)

2004 (2)

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

2003 (1)

Allison, T. K.

Chen, J.

Choi, S. Y.

Cingöz, A.

Cox, J.

Fermann, M. E.

Fujimoto, J. G.

Gao, X.

Gopinath, J. T.

Hartl, I.

Hou, D.

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Hu, M.

Ippen, E. P.

Jiang, T.

Jung, K.

Kaertner, F. X.

Kalaydzhyan, A.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Kärtner, F. X.

Kim, C.

Kim, G. H.

Kim, H.

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

K. Jung and J. Kim, “Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency,” Opt. Lett. 40(3), 316–319 (2015).
[Crossref] [PubMed]

J. Shin, K. Jung, Y. Song, and J. Kim, “Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering,” Opt. Express 23(17), 22898–22906 (2015).
[Crossref] [PubMed]

H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G. H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
[Crossref] [PubMed]

P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
[Crossref] [PubMed]

Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
[Crossref] [PubMed]

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010).
[Crossref] [PubMed]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[Crossref] [PubMed]

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
[Crossref] [PubMed]

Kim, T. K.

Kolodziejski, L. A.

Kong, Z.

Kuzucu, O.

Kwon, D.

Lee, K. E.

Li, C.

Lim, D. R.

Liu, Y.

Ma, Y.

Mücke, O. D.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Nam, C. H.

Ning, B.

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Niu, F.

Obraztsova, E. D.

Park, M. J.

Paschotta, R.

R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[Crossref] [PubMed]

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

Peng, M. Y.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Perrott, M. H.

Petrich, G. S.

Qin, P.

Rotermund, F.

Ruehl, A.

Safak, K.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Schibli, T. R.

Shin, J.

Shum, P.

Song, Y.

Tandon, S. N.

Tian, H.

Valley, G. C.

Wang, A.

Wang, C.

Wang, W. T.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Wang, Y.

Wong, J. H.

Wong, V. K.

Wu, J.

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Wu, K.

Xin, M.

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Yang, H.

Ye, J.

Yost, D. C.

Zhang, J.

Zhang, S.

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Zhang, Z.

Zhao, Z.

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Hou, B. Ning, S. Zhang, J. Wu, and Z. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Light Sci. Appl. (1)

M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. T. Wang, O. D. Mücke, and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6(1), e16187 (2017).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (9)

K. Wu, J. H. Wong, P. Shum, D. R. Lim, V. K. Wong, K. E. Lee, J. Chen, and E. D. Obraztsova, “Timing-jitter reduction of passively mode-locked fiber laser with a carbon nanotube saturable absorber by optimization of cavity loss,” Opt. Lett. 35(7), 1085–1087 (2010).
[Crossref] [PubMed]

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
[Crossref] [PubMed]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[Crossref] [PubMed]

K. Jung and J. Kim, “Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency,” Opt. Lett. 40(3), 316–319 (2015).
[Crossref] [PubMed]

Y. Wang, H. Tian, Y. Ma, Y. Song, and Z. Zhang, “Timing jitter of high-repetition-rate mode-locked fiber lasers,” Opt. Lett. 43(18), 4382–4385 (2018).
[Crossref] [PubMed]

H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G. H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
[Crossref] [PubMed]

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref] [PubMed]

J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup. λ/2: half wave plate; PBS: polarization beam splitter; PI servo: proportional-integral servo (Newfocus, LB1005).
Fig. 2
Fig. 2 (a) RIN spectra of laser 1. Curve (i) and (ii) are RIN spectrum without and with RIN suppression, respectively; curve (iii) and curve (iv) are integrated RIN spectrum without and with RIN suppression, respectively. (b) RIN spectra of laser 2. Curve (v) and (vi) are RIN spectrum without and with RIN suppression, respectively; curve (vii) and (viii) are integrated RIN spectrum without and with RIN suppression, respectively. Dash line: measurement noise floor.
Fig. 3
Fig. 3 (a) Measured timing jitter spectra with RIN suppression. Curve (i) and curve (ii) are measured by IL BOC and OOL OC, respectively. Inset: optical spectra of laser 1 and laser 2. (b) Measured timing jitter spectra without RIN suppression. Curve (iii) and curve (iv) are measured by IL BOC and OOL OC, respectively. Curve (v) and curve (vi) are IL BOC and OOL OC measurement noise floor, respectively.
Fig. 4
Fig. 4 (a) Measured timing jitter spectra in the Fourier frequency range from 100 Hz to 5 MHz. The timing jitter spectra in the Fourier frequency range from 100 Hz to 20 kHz (inside the BOC locking bandwidth) and from 20 kHz to 5 MHz (outside the locking bandwidth) are obtained from the PZT driving voltage noise and the OC output voltage noise, respectively. Gray curves (curve (i) and (iii)) and red curves (curve (ii) and (iv)) are timing jitter spectra without and with RIN suppression, respectively. (b) Curve (v) and curve (vi) are calculated RIN coupled jitter spectrum by self-steepening effect without and with RIN suppression.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S Δ φ 2 (f)= S Δ f 2 (f)/ f 2 , S Δ t 2 (f)= S Δ φ 2 (f)/(2π f R ),
S ΔT RIN (f)= 1 f 2 ( φ NL π T R ω C ) 2 S RIN (f),

Metrics