Abstract

A silica-nanoparticle-and-azo-dye-doped liquid crystal (LC) phase grating with multistable and dynamic modes based on photo- and nanoparticle-induced alignments was demonstrated. The photoalignment suppressed the electrophoretic movement of the silica nanoparticles in the hybrid aligned nematic (HAN) LC cell to maintain the vertical orientation of LCs during the electrical operation process by means of the azo dyes adsorbed on the silica networks in the homogeneously aligned side of the sample, and contributed two LC structures to form a grating. Through the excitation of a DC pulse with proper polarity and an AC voltage, the multistable and dynamic diffraction efficiencies of the grating were achieved, respectively, by electrophoretically controlled silica nanoparticles and the electrically controlled birefringence effect of LCs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual liquid crystal alignment configuration based on nanoparticle-doped polymer films

Andy Ying-Guey Fuh, Chen-Yu Huang, Cheng-Kai Liu, Yuan-Di Chen, and Ko-Ting Cheng
Opt. Express 19(12) 11825-11831 (2011)

Polarization-independent holographic gratings based on azo-dye-doped polymer-dispersed liquid-crystal films

Andy Ying-Guey Fuh, Che-Chang Chen, Ko-Ting Cheng, Cheng-Kai Liu, and Wei-Ko Chen
Appl. Opt. 49(2) 275-280 (2010)

Dual-operation-mode liquid crystal lens

Chi -Yen Huang, Yi -Jen Huang, and Yao -Hsien Tseng
Opt. Express 17(23) 20860-20865 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Xu, G. Tan, and S.-T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
    [Crossref] [PubMed]
  2. J. L. M. Fuentes, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(13), 14159–14171 (2016).
    [Crossref] [PubMed]
  3. W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
    [Crossref] [PubMed]
  4. K. Wang, J. Zheng, H. Gao, F. Lu, L. Sun, S. Yin, and S. Zhuang, “Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display,” Opt. Express 23(24), 31436–31445 (2015).
    [Crossref] [PubMed]
  5. Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [Crossref] [PubMed]
  6. H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J.-H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
    [Crossref] [PubMed]
  7. B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
    [Crossref]
  8. J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20(3), 3034–3042 (2012).
    [Crossref] [PubMed]
  9. S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
    [Crossref]
  10. A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
    [Crossref]
  11. C.-H. Lin, R.-H. Chiang, S.-H. Liu, C.-T. Kuo, and C.-Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
    [Crossref] [PubMed]
  12. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  13. M. Xu, H. Jing, Y. Xiang, Y. Liu, Z. Cai, F. Wang, J. Li, E. Wang, Y. Wang, and Y. Cai, “Voltage selectable dual-mode optically induced grating in ZnTPP doped chiral nematic liquid crystals,” Opt. Mater. Express 7(4), 1317–1326 (2017).
    [Crossref]
  14. C.-T. Kuo, R.-H. Chiang, C.-Y. Wang, P.-H. Hsieh, Y.-T. Lin, C.-H. Lin, and C.-Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
    [Crossref] [PubMed]
  15. H.-F. Shih and B.-W. Li, “Multimode grating using polymer-stabilized liquid crystals and novel electrodes,” Opt. Express 15(15), 9707–9714 (2007).
    [Crossref] [PubMed]
  16. H. Wu, W. Hu, H.-C. Hu, X.-W. Lin, G. Zhu, J.-W. Choi, V. Chigrinov, and Y.-Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  17. K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
    [Crossref]
  18. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
    [Crossref]
  19. Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
    [Crossref] [PubMed]
  20. W. Hu, A. Srivastava, F. Xu, J.-T. Sun, X.-W. Lin, H.-Q. Cui, V. Chigrinov, and Y.-Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
    [Crossref] [PubMed]
  21. W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
    [Crossref]
  22. H.-P. Tong, Y.-R. Li, J.-D. Lin, and C.-R. Lee, “All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye,” Opt. Express 18(3), 2613–2620 (2010).
    [Crossref] [PubMed]
  23. A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
    [Crossref] [PubMed]
  24. J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express 19(3), 2216–2224 (2011).
    [Crossref] [PubMed]
  25. J. Kim, J.-H. Suh, B.-Y. Lee, S.-U. Kim, and S.-D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
    [Crossref] [PubMed]
  26. H.-C. Yeh, “Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals,” Opt. Express 19(6), 5500–5510 (2011).
    [Crossref] [PubMed]
  27. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19(21), 1723–1725 (1994).
    [Crossref] [PubMed]
  28. D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
    [Crossref]
  29. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [Crossref] [PubMed]
  30. V. Hsiao, C. Lu, G. He, M. Pan, A. Cartwright, P. Prasad, R. Jakubiak, R. Vaia, and T. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
    [Crossref] [PubMed]
  31. L. De Sio and C. Umeton, “Dual-mode control of light by two-dimensional periodic structures realized in liquid-crystalline composite materials,” Opt. Lett. 35(16), 2759–2761 (2010).
    [Crossref] [PubMed]
  32. X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).
  33. H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
    [Crossref]
  34. E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
    [Crossref]
  35. X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
    [Crossref]
  36. H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
    [Crossref]
  37. J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
    [Crossref]
  38. D. Sikharulidze, “Nanoparticles: An approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
    [Crossref]
  39. C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
    [Crossref]
  40. C.-Y. Huang, Y.-J. Huang, and Y.-H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
    [Crossref] [PubMed]
  41. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
    [Crossref] [PubMed]
  42. S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

M. Xu, H. Jing, Y. Xiang, Y. Liu, Z. Cai, F. Wang, J. Li, E. Wang, Y. Wang, and Y. Cai, “Voltage selectable dual-mode optically induced grating in ZnTPP doped chiral nematic liquid crystals,” Opt. Mater. Express 7(4), 1317–1326 (2017).
[Crossref]

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (2)

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

C.-T. Kuo, R.-H. Chiang, C.-Y. Wang, P.-H. Hsieh, Y.-T. Lin, C.-H. Lin, and C.-Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
[Crossref] [PubMed]

2012 (5)

2011 (2)

2010 (4)

2009 (2)

2008 (3)

S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
[Crossref] [PubMed]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

2007 (4)

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

H.-F. Shih and B.-W. Li, “Multimode grating using polymer-stabilized liquid crystals and novel electrodes,” Opt. Express 15(15), 9707–9714 (2007).
[Crossref] [PubMed]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
[Crossref]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

2005 (3)

D. Sikharulidze, “Nanoparticles: An approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[Crossref]

V. Hsiao, C. Lu, G. He, M. Pan, A. Cartwright, P. Prasad, R. Jakubiak, R. Vaia, and T. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[Crossref] [PubMed]

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

2004 (1)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

2003 (2)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

1999 (1)

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

1997 (1)

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

1994 (1)

1981 (1)

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Artal, P.

Balzaretti, N. M.

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

Boswell, D.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Brito, J. B.

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

Bunning, T.

Cai, Y.

Cai, Z.

Cartwright, A.

Chavel, P.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Chen, L.

Chen, L.-J.

Cheng, K.-T.

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Chiang, R.-H.

Chigrinov, V.

Chigrinov, V. G.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Choi, J.-W.

Costa, T. M. H.

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

Cui, H.-Q.

De Sio, L.

Fang, Z.

Fernández, E. J.

Francescangeli, O.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Fuentes, J. L. M.

Fuh, A. Y.-G

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

Fuh, A. Y.-G.

H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J.-H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
[Crossref] [PubMed]

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

Fung, R.-X.

Galstian, T.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Gao, H.

Ge, Y.-H.

Gvozdovskyy, I.

He, G.

Hsiao, V.

Hsieh, P.-H.

Hu, H.-C.

Hu, W.

Huang, A.

Huang, C.-Y.

Huang, H.

Huang, L.-J.

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

Huang, S.-Y.

Huang, T. J.

Huang, W.

Huang, Y.-J.

Jakubiak, R.

Jang, E.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Jau, H.-C.

Jiang, R.-G.

Jiang, Y.

Jing, H.

Kawatsuki, N.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
[Crossref]

Khoo, I. C.

Kim, H.-R.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Kim, J.

Kim, S.-U.

Ko, S.-W.

Kuo, C.-T.

Kwok, H.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Lackner, A. M.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Lai, C.-C.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

Lee, B.-Y.

Lee, C.-R.

H.-P. Tong, Y.-R. Li, J.-D. Lin, and C.-R. Lee, “All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye,” Opt. Express 18(3), 2613–2620 (2010).
[Crossref] [PubMed]

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Lee, S.-D.

Li, B.-W.

Li, H.

Li, J.

Li, M. S.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

Li, S.-S.

Li, X.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref] [PubMed]

Li, Y.-R.

Liang, Y.

Lin, C.-H.

Lin, H. C.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

Lin, H.-C.

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Lin, J.-D.

Lin, T.-H.

Lin, X.-W.

Lin, Y.-T.

Liu, J.-H.

Liu, S.-H.

Liu, T.-C.

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. J.

Liu, Z.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Lo, K.-Y.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

Lu, C.

Lu, C.-Y.

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

Lu, F.

Lu, Y.-Q.

Lucchetta, D. E.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

Margerum, J. D.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Na, J.-H.

Na, Y.-J.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Oikawa, S.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
[Crossref]

Ono, H.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
[Crossref]

Pan, M.

Prasad, P.

Prieto, P. M.

Pu, D.

Qiao, W.

Reznikov, Y.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Rodembusch, F. S.

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

Sawchuk, A. A.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Serbina, M.

Shen, D.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Shen, Y.

Shi, J.

Shih, H.-F.

Sikharulidze, D.

D. Sikharulidze, “Nanoparticles: An approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[Crossref]

Simoni, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Slussarenko, S.

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

Soffer, B. H.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Srivastava, A.

Strand, T. C.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Suh, J.-H.

Sun, G.

Sun, J.-T.

Sun, L.

Tan, G.

Tang, P.

Tanguay, A. R.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Tien, C.-J.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

Ting, C.-L.

Tong, H.-P.

Tong, X.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Tsai, M.-S.

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

Tsai, S.-F.

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Tseng, M.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Tseng, Y.-H.

C.-Y. Huang, Y.-J. Huang, and Y.-H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[Crossref] [PubMed]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

Tzeng, Y.-Y.

Umeton, C.

Vaia, R.

Vita, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

Walker, T. R.

Wan, W.

Wang, C.-Y.

Wang, E.

Wang, F.

Wang, G.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Wang, K.

Wang, T.

Wang, X.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Wang, X.-Z.

Wang, Y.

Weng, Y.

Wu, H.

Wu, S.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Wu, S.-T.

Wu, W. Y.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

Xiang, Y.

Xu, D.

Xu, F.

Xu, M.

Xu, Y.-C.

Yamaguchi, R.

Yan, S.-C.

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Yang, M.-R.

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Yang, W.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Yang, Y.-T.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

Yaroshchuk, O.

Yavrian, A.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Ye, Y.

Yeh, H.-C.

Yin, S.

Yuan, C.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Zhang, Y.

Zhao, Y.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Zheng, J.

Zheng, Y. B.

Zheng, Z.

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Zhu, G.

Zhu, M.

Zhuang, S.

App. Phys. Letts. (1)

A. Y.-G Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” App. Phys. Letts. 74(18), 2572–2574 (1999).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71(25), 3613–3615 (1997).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

H.-C. Lin, M.-R. Yang, S.-F. Tsai, and S.-C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

D. Sikharulidze, “Nanoparticles: An approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[Crossref]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[Crossref]

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

J. Appl. Phys. (2)

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103(8), 083119 (2008).
[Crossref]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101(12), 123523 (2007).
[Crossref]

J. Lumin. (1)

J. B. Brito, T. M. H. Costa, F. S. Rodembusch, and N. M. Balzaretti, “Photoluminescence of silica monoliths prepared from cold sinteringof nanometric aerosil precursors under high pressure,” J. Lumin. 187, 154–159 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, and M.-S. Tsai, “Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 42(12), 7344–7348 (2003).
[Crossref]

Liq. Cryst. (1)

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, and P. Chavel, “Variable grating mode liquid crystal device for optical processing computing,” Mol. Cryst. Liq. Cryst. 70(1), 145–161 (1981).
[Crossref]

Opt. Express (21)

V. Hsiao, C. Lu, G. He, M. Pan, A. Cartwright, P. Prasad, R. Jakubiak, R. Vaia, and T. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[Crossref] [PubMed]

H.-F. Shih and B.-W. Li, “Multimode grating using polymer-stabilized liquid crystals and novel electrodes,” Opt. Express 15(15), 9707–9714 (2007).
[Crossref] [PubMed]

S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
[Crossref] [PubMed]

C.-Y. Huang, Y.-J. Huang, and Y.-H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[Crossref] [PubMed]

H.-P. Tong, Y.-R. Li, J.-D. Lin, and C.-R. Lee, “All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye,” Opt. Express 18(3), 2613–2620 (2010).
[Crossref] [PubMed]

H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J.-H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
[Crossref] [PubMed]

J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express 19(3), 2216–2224 (2011).
[Crossref] [PubMed]

H.-C. Yeh, “Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals,” Opt. Express 19(6), 5500–5510 (2011).
[Crossref] [PubMed]

J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20(3), 3034–3042 (2012).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

W. Hu, A. Srivastava, F. Xu, J.-T. Sun, X.-W. Lin, H.-Q. Cui, V. Chigrinov, and Y.-Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[Crossref] [PubMed]

H. Wu, W. Hu, H.-C. Hu, X.-W. Lin, G. Zhu, J.-W. Choi, V. Chigrinov, and Y.-Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

C.-H. Lin, R.-H. Chiang, S.-H. Liu, C.-T. Kuo, and C.-Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

C.-T. Kuo, R.-H. Chiang, C.-Y. Wang, P.-H. Hsieh, Y.-T. Lin, C.-H. Lin, and C.-Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
[Crossref] [PubMed]

D. Xu, G. Tan, and S.-T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

J. Kim, J.-H. Suh, B.-Y. Lee, S.-U. Kim, and S.-D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
[Crossref] [PubMed]

K. Wang, J. Zheng, H. Gao, F. Lu, L. Sun, S. Yin, and S. Zhuang, “Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display,” Opt. Express 23(24), 31436–31445 (2015).
[Crossref] [PubMed]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

J. L. M. Fuentes, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(13), 14159–14171 (2016).
[Crossref] [PubMed]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref] [PubMed]

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26(2), 1422–1432 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Opt. Mater. 17(3), 370–374 (2005).

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Polymers (Basel) (1)

X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen, and Z. Zheng, “Light-driven liquid crystal circular dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask,” Polymers (Basel) 9(8), 380 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Process of fabricating LC grating. (a)–(d) POM images and (e)–(h) schematic diagrams of the sample.
Fig. 2
Fig. 2 POM images of the samples with 5 h illumination duration.
Fig. 3
Fig. 3 T–V results of samples with various illumination durations.
Fig. 4
Fig. 4 AFM images in (a) pumped and (b) non-pumped regions of the rubbed substrate.
Fig. 5
Fig. 5 The multistable characteristics of the non-pumped region in the sample.
Fig. 6
Fig. 6 POM images of the grating after various positive DC pulses in the multistable mode.
Fig. 7
Fig. 7 (a) Variations in the diffraction efficiencies of the LC grating with positive DC pulse in the multistable mode. (b) Diffraction patterns of the LC grating under s-polarized light after various positive DC pulses in the multistable mode.
Fig. 8
Fig. 8 POM images of the LC grating with the application of various AC voltages.
Fig. 9
Fig. 9 (a) Variations in the diffraction efficiencies of the LC grating with AC voltages in the dynamic mode. (b) Diffraction patterns of the LC grating under s-polarized light with AC voltage in the dynamic mode.

Metrics