Abstract

We report the first integrated implementation of a polarizer based on the use of 45° tilted gratings in planar waveguides. The waveguides and gratings are fabricated by direct UV writing in a hydrogenated germanium-doped silica-on-silicon chip. We experimentally demonstrate a polarization extinction ratio per unit length of 0.25 dB mm 1 with a modelled wavelength dependence smaller than 0.3 dB for a 20 mm device over the C band from 1530–1570 nm. We also present a novel numerical study and analytical description of the architecture that are in good agreement with each other and the experimental data.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology

Gayathri Bharathan, Darren D. Hudson, Robert I. Woodward, Stuart D. Jackson, and Alex Fuerbach
OSA Continuum 1(1) 56-63 (2018)

Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser

Chengbo Mou, Kaiming Zhou, Lin Zhang, and Ian Bennion
J. Opt. Soc. Am. B 26(10) 1905-1911 (2009)

In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber

Zhijun Yan, Kaiming Zhou, and Lin Zhang
Opt. Lett. 37(18) 3819-3821 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
    [Crossref]
  2. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
    [Crossref]
  3. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
    [Crossref]
  4. J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4, 90–96 (2017).
    [Crossref]
  5. L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434–1436 (2005).
    [Crossref] [PubMed]
  6. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  7. J. D. Sarmiento-Merenguel, R. Halir, X. L. Roux, C. Alonso-Ramos, L. Vivien, P. Cheben, E. Durán-Valdeiglesias, I. Molina-Fernández, D. Marris-Morini, D.-X. Xu, J. H. Schmid, S. Janz, and A. Ortega-Moñux, “Demonstration of integrated polarization control with a 40 dB range in extinction ratio,” Optica 2, 1019–1023 (2015).
    [Crossref]
  8. P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
    [Crossref]
  9. S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
    [Crossref]
  10. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
    [Crossref]
  11. P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
    [Crossref]
  12. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21, 15747–15754 (2013).
    [Crossref] [PubMed]
  13. C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
    [Crossref]
  14. C. Holmes, L. G. Carpenter, H. L. Rogers, I. J. G. Sparrow, J. C. Gates, and P. G. R. Smith, “Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing,” Opt. Express 19, 12462–12468 (2011).
    [Crossref] [PubMed]
  15. H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
    [Crossref]
  16. Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
    [Crossref]
  17. T. Yoshino, “Theoretical analysis of a tilted fiber grating polarizer by the beam tracing approach,” J. Opt. Soc. Am. B 29, 2478–2483 (2012).
    [Crossref]
  18. G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
    [Crossref]
  19. R. Kashyap, “Chapter 4 - Theory of fiber Bragg gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 119–194.
    [Crossref]
  20. C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett. 38, 3448–3451 (2013).
    [Crossref] [PubMed]
  21. T. Erdogan, “Fiber grating spectra,” J. Light. Technol. 15, 1277–1294 (1997).
    [Crossref]
  22. H. L. Rogers, S. Ambran, C. Holmes, J. C. Gates, and P. G. R. Smith, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2015 (3)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

J. D. Sarmiento-Merenguel, R. Halir, X. L. Roux, C. Alonso-Ramos, L. Vivien, P. Cheben, E. Durán-Valdeiglesias, I. Molina-Fernández, D. Marris-Morini, D.-X. Xu, J. H. Schmid, S. Janz, and A. Ortega-Moñux, “Demonstration of integrated polarization control with a 40 dB range in extinction ratio,” Optica 2, 1019–1023 (2015).
[Crossref]

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

2013 (2)

2012 (2)

T. Yoshino, “Theoretical analysis of a tilted fiber grating polarizer by the beam tracing approach,” J. Opt. Soc. Am. B 29, 2478–2483 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

2011 (2)

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

C. Holmes, L. G. Carpenter, H. L. Rogers, I. J. G. Sparrow, J. C. Gates, and P. G. R. Smith, “Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing,” Opt. Express 19, 12462–12468 (2011).
[Crossref] [PubMed]

2010 (2)

2007 (1)

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

2006 (1)

G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
[Crossref]

2005 (1)

2001 (2)

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
[Crossref]

2000 (1)

P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

1998 (1)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Light. Technol. 15, 1277–1294 (1997).
[Crossref]

Alonso-Ramos, C.

Ambran, S.

Augustin, L. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Bannerman, R. H. S.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Bowers, J. E.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
[Crossref]

Burgwal, R.

Carpenter, L. G.

Chauve, J.

G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
[Crossref]

Cheben, P.

Chen, X.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

Chen, Z.

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

Clements, W. R.

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
[Crossref]

de Laat, W. J. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Demarco, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Durán-Valdeiglesias, E.

Erdogan, T.

Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
[Crossref]

P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Light. Technol. 15, 1277–1294 (1997).
[Crossref]

Froggatt, M.

Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
[Crossref]

Gates, J. C.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4, 90–96 (2017).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21, 15747–15754 (2013).
[Crossref] [PubMed]

C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett. 38, 3448–3451 (2013).
[Crossref] [PubMed]

C. Holmes, L. G. Carpenter, H. L. Rogers, I. J. G. Sparrow, J. C. Gates, and P. G. R. Smith, “Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing,” Opt. Express 19, 12462–12468 (2011).
[Crossref] [PubMed]

H. L. Rogers, S. Ambran, C. Holmes, J. C. Gates, and P. G. R. Smith, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Halir, R.

Hanfoug, R.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Holmes, C.

Humphreys, P. C.

Janz, S.

Jin, Z.

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

Johnson, D.

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

Julian, N.

Kashyap, R.

G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
[Crossref]

R. Kashyap, “Chapter 4 - Theory of fiber Bragg gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 119–194.
[Crossref]

Kolthammer, W. S.

Laskowski, E. J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Li, Y.

Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
[Crossref]

Liu, W.

Ma, H.

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

Madsen, C. K.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Marris-Morini, D.

Mennea, P. L.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Metcalf, B. J.

Mihailov, S.

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

Milbrodt, M. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Molina-Fernández, I.

Mou, C.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

Muehlner, D.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Nemova, G.

G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
[Crossref]

Ortega-Moñux, A.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Renema, J. J.

Rogers, H. L.

Roux, X. L.

Sarmiento-Merenguel, J. D.

Schmid, J. H.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Sima, C.

Smit, M. K.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Smith, B. J.

Smith, D. H.

Smith, P. G. R.

P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley, and P. G. R. Smith, “Modular linear optical circuits,” Optica 5, 1087–1090 (2018).
[Crossref]

J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4, 90–96 (2017).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21, 15747–15754 (2013).
[Crossref] [PubMed]

C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett. 38, 3448–3451 (2013).
[Crossref] [PubMed]

C. Holmes, L. G. Carpenter, H. L. Rogers, I. J. G. Sparrow, J. C. Gates, and P. G. R. Smith, “Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing,” Opt. Express 19, 12462–12468 (2011).
[Crossref] [PubMed]

H. L. Rogers, S. Ambran, C. Holmes, J. C. Gates, and P. G. R. Smith, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Söller, C.

Sparrow, I. J. G.

Spring, J. B.

Stocki, T.

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

Strasser, T.

P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Strasser, T. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

van der Tol, J. J. G. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Vivien, L.

Wagener, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

Walker, R.

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

Walmsley, I. A.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, Z.

Westbrook, P.

P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Xu, D.-X.

Yan, Z.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

Yoshino, T.

Zervas, M. N.

Zhang, J.

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

Zhang, L.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

Zhou, K.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

Zhou, L.

Electron. Lett. (1)

S. Mihailov, R. Walker, T. Stocki, and D. Johnson, “Fabrication of tilted fibre-grating polarisation-dependent loss equaliser,” Electron. Lett. 37, 284–286 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. Demarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4, 925–929 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

P. Westbrook, T. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

J. Light. Technol. (4)

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Light. Technol. 29, 2715–2724 (2011).
[Crossref]

H. Ma, J. Zhang, Z. Chen, and Z. Jin, “Tilted waveguide gratings and implications for optical waveguide-ring resonator,” J. Light. Technol. 33, 4176–4183 (2015).
[Crossref]

Y. Li, M. Froggatt, and T. Erdogan, “Volume current method for analysis of tilted fiber,” J. Light. Technol. 19, 1580–1591 (2001).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Light. Technol. 15, 1277–1294 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Commun. (1)

G. Nemova, J. Chauve, and R. Kashyap, “Design of sidetap fiber Bragg grating filters,” Opt. Commun. 259, 649–654 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (3)

Other (1)

R. Kashyap, “Chapter 4 - Theory of fiber Bragg gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 119–194.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic top view of the waveguide indicating tilted grating planes and polarization splitting effects. (b) Abstracted cross-section of the buried waveguide structure for modelling purposes. The transverse profile is nearly Gaussian in actual devices.
Fig. 2
Fig. 2 PER calculated using numerical and analytical models for 45° tilted gratings with respect to (a) grating length and (b) grating refractive index modulation. The expected linear and quadratic dependencies respectively areclearly shown. For computational reasons, the gratings are quite short, leading to the low PER numbers shown.
Fig. 3
Fig. 3 Bandwidth performance of the devices, showing good agreement between numerics and the analytical calculation. The spectral offset is likely due to slight mismatch in neff, the effective index of the waveguide mode, between the two calculations.
Fig. 4
Fig. 4 (a) Schematic top view of the device under test with waveguides and gratings of increasing length. A total of 12 waveguides were fabricated. (b) Fabricated 20 mm silica-on-silicon chip highlighting the gratings of varying length visible as rainbow highlights, increasing in length toward the top of frame. Light is in-coupled from the left via fiber V-groove.
Fig. 5
Fig. 5 On-chip tilted-grating polariser PER measurement setup; coupling in and out of the chip is via butt-coupled fiber V-groove assemblies.
Fig. 6
Fig. 6 Experimental PER with respect to grating length. Deviations from the straight line are assumed to represent variation in fabrication, likely due to outgassing of hydrogen. The error bar at 20 mm represents the standard error of the three devices made at that length.
Fig. 7
Fig. 7 Spectral response of the device at four angles, normalised to the same average power. The noise at the edges is due to the finite bandwidth of the light source used, causing the signal to reach the noise floor.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n w ( x , y ) n co + Δ n exp  ( y 2 / σ 2 ) ,
n g ( x , y ) = n w ( x , y ) + Δ n g sin  ( 2 π x y tan  ( θ ) Λ ) exp  ( y 2 σ 2 ) = n co + [ Δ n + Δ n g sin   ( 2 π x y tan   ( θ ) Λ ) ] exp   ( y 2 σ 2 ) ,
Γ ( λ ) = Γ 0 exp  [ 2 π 2 σ 2 w 0 2 σ 2 + w 0 2 ( n eff λ 1 Λ ) 2 ] ,
Γ 0 L = 10 2 π 5 / 2 ln  ( 10 ) σ 2 w 0 σ 2 + w 0 2 ( Δ n g 2 Λ n eff ) 2 ,

Metrics