Abstract

Single-mode polymer photonics is of significant interest to short-reach data communications, photonic packaging, sensing, and biophotonic light delivery. We report here experimental demonstration of mechanically flexible waveguides fabricated by using commercial off-the-shelf biocompatible polymers that claim a record low propagation loss of 0.11 dB/cm near 850 nm wavelength. We also show the excellent flexibility of the free-standing waveguides which can withstand repeated deformation cycles at millimeter bending radius without compromising their low-loss characteristics. High-performance passive optical components, such as waveguide Y-branches, multi-mode interferometers (MMIs), and waveguide crossings are also realized using the polymer photonics platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low bending loss metal waveguide embedded in a free-standing multilayered polymer film

Jong-Moo Lee, Suntak Park, Min-su Kim, Seung Koo Park, Jin Tae Kim, Joong-Seon Choe, Wook-Jae Lee, Myung-Hyun Lee, and Jung Jin Ju
Opt. Express 17(1) 228-234 (2009)

Nanoporosity effect in optical loss of single-mode polymer waveguides

Aydin Yeniay and Renfeng Gao
Appl. Opt. 49(19) 3684-3690 (2010)

Low-loss flexible Parylene photonic waveguides for optical implants

Jay W. Reddy and Maysamreza Chamanzar
Opt. Lett. 43(17) 4112-4115 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
    [Crossref]
  2. Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
    [Crossref]
  3. M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
    [Crossref]
  4. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  5. T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
    [Crossref]
  6. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
    [Crossref]
  7. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
    [Crossref]
  8. X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
    [Crossref]
  9. Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
    [Crossref]
  10. X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21(2), 2110–2117 (2013).
    [Crossref] [PubMed]
  11. H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
    [Crossref]
  12. J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22(4), 4168–4179 (2014).
    [Crossref] [PubMed]
  13. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
    [Crossref]
  14. T. Barwicz and Y. Taira, “Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances,” IEEE Photonics J. 6(4), 1–18 (2014).
    [Crossref]
  15. M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
    [Crossref]
  16. S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
    [Crossref] [PubMed]
  17. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  18. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  19. M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
    [Crossref]
  20. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  21. D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  22. L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
    [Crossref]
  23. T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
    [Crossref]
  24. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  25. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref] [PubMed]
  26. J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
    [Crossref]
  27. M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
    [Crossref] [PubMed]
  28. L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
    [Crossref]
  29. X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
    [Crossref] [PubMed]
  30. K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
    [Crossref] [PubMed]
  31. G. Panusa, Y. Pu, J. Wang, C. Moser, and D. Psaltis, “Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane,” Opt. Mater. Express 9(1), 128–138 (2019).
    [Crossref]
  32. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
    [Crossref] [PubMed]
  33. H. Sieber, H. J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode light waveguides in polymer,” in (International Society for Optics and Photonics, 2012), 8431, p. 84311R.
  34. S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
    [Crossref] [PubMed]
  35. M. Girschikofsky, M. Förthner, M. Rommel, L. Frey, and R. Hellmann, “Waveguide Bragg gratings in Ormocer hybrid polymers,” Opt. Express 24(13), 14725–14736 (2016).
    [Crossref] [PubMed]
  36. D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5(9), 1046–1054 (2018).
    [Crossref]
  37. The Handbook of Organic Compounds (Elsevier, 2001).
  38. A. Takahashi, A. Inoue, T. Sassa, and Y. Koike, “Fluorination effects on attenuation spectra of plastic optical fiber core materials,” Opt. Mater. Express 3(5), 658–663 (2013).
    [Crossref]
  39. L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
    [Crossref] [PubMed]
  40. L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
    [Crossref]
  41. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  42. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lit. Technol. 13(4), 615–627 (1995).
    [Crossref]
  43. T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
    [Crossref]
  44. J. Chen, N. Bamiedakis, P. P. Vasil’ev, R. V. Penty, and I. H. White, “Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects,” (2017) https://arxiv.org/abs/1701.00846 .

2019 (1)

2018 (7)

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5(9), 1046–1054 (2018).
[Crossref]

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (5)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

M. Girschikofsky, M. Förthner, M. Rommel, L. Frey, and R. Hellmann, “Waveguide Bragg gratings in Ormocer hybrid polymers,” Opt. Express 24(13), 14725–14736 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22(4), 4168–4179 (2014).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

T. Barwicz and Y. Taira, “Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances,” IEEE Photonics J. 6(4), 1–18 (2014).
[Crossref]

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

2013 (6)

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
[Crossref]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21(2), 2110–2117 (2013).
[Crossref] [PubMed]

A. Takahashi, A. Inoue, T. Sassa, and Y. Koike, “Fluorination effects on attenuation spectra of plastic optical fiber core materials,” Opt. Mater. Express 3(5), 658–663 (2013).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

2012 (2)

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

2009 (4)

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (2)

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

2004 (1)

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

2003 (1)

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

2002 (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

2000 (1)

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lit. Technol. 13(4), 615–627 (1995).
[Crossref]

Agarwal, A.

Ahn, S. W.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Alosno-Ramos, C.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Amano, C.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Amb, C. M.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Baks, C. W.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Balthasar, G.

Bamiedakis, N.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Barwicz, T.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

T. Barwicz and Y. Taira, “Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances,” IEEE Photonics J. 6(4), 1–18 (2014).
[Crossref]

Bi, H.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Billah, M. R.

Blaicher, M.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Boersma, A.

Bosman, E.

Boyer, N.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Brown, C. T. A.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Budd, R.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Chadha, V.

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

Charters, R.

Chen, J.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Chen, K.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Chen, R. T.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21(2), 2110–2117 (2013).
[Crossref] [PubMed]

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

Cho, I. J.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Cho, J.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Choi, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Chung, C. J.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Corbett, B.

Dai, D.

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Dalir, H.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dangel, R.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Deshazer, D. J.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

Doany, F. E.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Edwards, T. J.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Engelmann, S.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Englund, D.

Feng, N. N.

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Fetterman, H. R.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Förthner, M.

Fortier, P.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Freude, W.

Frey, L.

Gather, M. C.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Girschikofsky, M.

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gu, T.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
[Crossref]

Gunther, A.

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

Guo, L. J.

Gupta, M.

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

Hahn, S. K.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Han, T.

Haney, M.

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Haney, M. W.

T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
[Crossref]

He, S.

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

He, Z.

Hellmann, R.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Hikita, M.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Hillerkuss, D.

Hofmann, A.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hofrichter, J.

Hoose, T.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Horst, F.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Hu, J.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5(9), 1046–1054 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

Huang, Y.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

Huang, Y.-Z.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Humar, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Inoue, A.

Ishigure, T.

Janta-Polczynski, A.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jeon, M.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Jia, B.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Jiang, S.

Jiang, W.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

Johnson, S. G.

Jordan, M.

Jubin, D.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Jung, D.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Justice, J.

Kagawa, T.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Kalathimekkad, S.

Kalra, S.

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

Kamlapurkar, S.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Karppinen, M.

Kash, J. A.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Khan, M. U.

Khater, M. H.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Kim, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Kim, Y. K.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Kimbrell, E. L.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Kimerling, L. C.

Kita, D. M.

Koike, Y.

Koos, C.

Korhonen, T.

Kuchta, D. M.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

La Porta, A.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

Leidy, R.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Leuthold, J.

Li, J.

Li, J. Y.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Li, L.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Libsch, F.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Lichoulas, T. W.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Lin, X.

Lindenmann, N.

Ling, T.

Lu, N.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Luther-Davies, B.

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Ma, L.

Ma, Z.

Madden, S.

Marin-Palomo, P.

Martin, Y.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Meier, N.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Michon, J.

Miller, D.

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Missinne, J.

Moehrle, M.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Moser, C.

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Nah, J.-W.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Nair, R.

T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
[Crossref]

Nesic, A.

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Numata, H.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Offrein, B. J.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Oh, M. C.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Paloczi, G. T.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

Pan, Z.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Panusa, G.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lit. Technol. 13(4), 615–627 (1995).
[Crossref]

Penty, R. V.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Pepeljugoski, P.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Petäjä, J.

Poon, J. K. S.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

Psaltis, D.

Pu, Y.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Rahlves, M.

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

Randel, S.

Randolph, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Redmond, R. W.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Reithmeier, E.

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Rezem, M.

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

Richardson, K.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Rommel, M.

Roth, B.

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

Sakamoto, T.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Sassa, T.

Scarcelli, G.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Schares, L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Schmogrow, R.

Schow, C. L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Seifried, M.

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

Sheng, Z.

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Shin, S.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Shiue, R. J.

Singh, A.

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

Soganci, I. M.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lit. Technol. 13(4), 615–627 (1995).
[Crossref]

Song, H. C.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Steier, W. H.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Subbaraman, H.

Sun, X.

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

Swatowski, B. W.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Taira, Y.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

T. Barwicz and Y. Taira, “Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances,” IEEE Photonics J. 6(4), 1–18 (2014).
[Crossref]

Takahashi, A.

Takenobu, S.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Tateno, K.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876–883 (2018).
[Crossref]

Tsuda, H.

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

Van Hoe, B.

Van Steenberge, G.

Vanfleteren, J.

Vasilev, P. P.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Vivien, L.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Vlasov, Y. A.

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

Wang, J.

G. Panusa, Y. Pu, J. Wang, C. Moser, and D. Psaltis, “Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane,” Opt. Mater. Express 9(1), 128–138 (2019).
[Crossref]

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Wang, L.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

Wang, X.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

Wang, Y.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Weidner, W. K.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

Weiss, J.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

White, I. H.

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

Wiegersma, S.

Xu, X.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
[Crossref] [PubMed]

Yadav, A.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Yan, H.

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Yang, B.

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Yang, L.

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Yariv, A.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

Yasuhara, K.

Yoon, E. S.

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

Yu, F.

Yun, S. H.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Zhang, C.

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

Zhang, M.

Zhang, P.

Zhou, W.

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

Adv. Mater. (2)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16(1), 44–48 (2004).
[Crossref]

Appl. Phys. Lett. (2)

H. C. Song, M. C. Oh, S. W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[Crossref]

L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, “Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides,” Appl. Phys. Lett. 93(20), 203304 (2008).
[Crossref]

Contemp. Clin. Dent. (1)

S. Kalra, A. Singh, M. Gupta, and V. Chadha, “Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent,” Contemp. Clin. Dent. 3(1), 48–53 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Barwicz, Y. Taira, T. W. Lichoulas, N. Boyer, Y. Martin, H. Numata, J.-W. Nah, S. Takenobu, A. Janta-Polczynski, E. L. Kimbrell, R. Leidy, M. H. Khater, S. Kamlapurkar, S. Engelmann, Y. A. Vlasov, and P. Fortier, “A Novel Approach to Photonic Packaging Leveraging Existing High-Throughput Microelectronic Facilities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 455–466 (2016).
[Crossref]

R. Dangel, A. La Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1 (2018).
[Crossref]

IEEE Photonics J. (1)

T. Barwicz and Y. Taira, “Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances,” IEEE Photonics J. 6(4), 1–18 (2014).
[Crossref]

IEEE Trans. Adv. Packag. (1)

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

J. Lit. Technol. (8)

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lit. Technol. 26(2), 243–250 (2008).
[Crossref]

M. Rezem, A. Gunther, B. Roth, E. Reithmeier, and M. Rahlves, “Low-cost fabrication of all-polymer components for integrated photonics,” J. Lit. Technol. 35(2), 299–308 (2017).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lit. Technol. 31(24), 4080–4086 (2013).
[Crossref]

J. Chen, N. Bamiedakis, P. P. Vasilev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects,” J. Lit. Technol. 34(12), 2934–2940 (2016).
[Crossref]

T. Gu, R. Nair, and M. W. Haney, “Chip-level multiple quantum well modulator-based optical interconnects,” J. Lit. Technol. 31(24), 4166–4174 (2013).
[Crossref]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lit. Technol. 31(24), 3915–3926 (2013).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lit. Technol. 13(4), 615–627 (1995).
[Crossref]

T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lit. Technol. 18(11), 1487–1492 (2000).
[Crossref]

J. Micromech. Microeng. (1)

M. Jeon, J. Cho, Y. K. Kim, D. Jung, E. S. Yoon, S. Shin, and I. J. Cho, “Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation,” J. Micromech. Microeng. 24(2), 025010 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

Z. Pan, X. Xu, C. J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen, “High-Speed Modulator Based on Electro-Optic Polymer Infiltrated Subwavelength Grating Waveguide Ring Resonator,” Laser Photonics Rev. 12(6), 1700300 (2018).
[Crossref]

Light Sci. Appl. (1)

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7(2), 17138 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. J. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Express (9)

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22(4), 4168–4179 (2014).
[Crossref] [PubMed]

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
[Crossref] [PubMed]

M. Girschikofsky, M. Förthner, M. Rommel, L. Frey, and R. Hellmann, “Waveguide Bragg gratings in Ormocer hybrid polymers,” Opt. Express 24(13), 14725–14736 (2016).
[Crossref] [PubMed]

K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
[Crossref] [PubMed]

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25(21), 25689–25696 (2017).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21(2), 2110–2117 (2013).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Optica (3)

Proc. IEEE (1)

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (3)

H. Sieber, H. J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode light waveguides in polymer,” in (International Society for Optics and Photonics, 2012), 8431, p. 84311R.

J. Chen, N. Bamiedakis, P. P. Vasil’ev, R. V. Penty, and I. H. White, “Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects,” (2017) https://arxiv.org/abs/1701.00846 .

The Handbook of Organic Compounds (Elsevier, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic process flow of the devices; (b) SEM image of an etched waveguide; (c) Freestanding polymer waveguide ribbon.
Fig. 2
Fig. 2 Measured waveguide propagation loss; inset shows the cross-sectional structure of the waveguide with simulated mode profile.
Fig. 3
Fig. 3 (a) Experiment setup for flexible polymer waveguide ribbon measurement; (b) transmittance variation of the flexible waveguides after 1,000 bending cycles at 2 mm bending. Here positive numbers correspond to a drop in transmission and negative numbers imply an increase of measured transmittance compared to that of as-fabricated waveguides.
Fig. 4
Fig. 4 SEM image of (a)1 × 2 MMI, (b)Y-branch, and (c)45° waveguide crossing. Insets show detailed structure at high magnification.
Fig. 5
Fig. 5 Measured insertion loss (IL) and uniformity of (a) 1 × 2 MMI and (b) waveguide Y-branch; (c) insertion loss spectrum of waveguide crossings with 45° and 90° crossing angles; (d) simulated and measured waveguide bending loss as a function of bending radius.

Tables (1)

Tables Icon

Table 1 Optimized OrmoCore polymer etching conditions

Metrics