Abstract

By introducing additional spin angular momentum (SAM) induced spiral phase, the spin-dependent transverse displacement of surface plasmon polaritons (SPPs) focus is effectively enlarged. The separation between the SPPs focuses generated by left circularly polarized (LCP) light and right circularly polarized (RCP) light reaches 1500 nm, which is six times larger than the previously reported values with semicircular plasmonic lens. The relationship between the displacement of the SPPs focus and the total spiral phase that consisted of the intrinsic and the additional spiral phase is theoretically established. Furthermore, the flexibility and versatility of the proposed mechanism is demonstrated by reversing or continuously controlling the SPPs focus. These findings hold great promise for spin-based plasmonic devices and the related applications, such as on-chip communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation

Seong-Won Moon, Hee-Dong Jeong, Siwoo Lee, Byoungho Lee, Yong-Sang Ryu, and Seung-Yeol Lee
Opt. Express 27(14) 19119-19129 (2019)

Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam

Sen Wang, Shuyun Wang, and Yan Zhang
Opt. Express 26(5) 5461-5468 (2018)

Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab

Tingting Tang, Jie Li, Li Luo, Ping Sun, and Yanfen Zhang
Opt. Express 25(3) 2347-2354 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
    [Crossref] [PubMed]
  2. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  3. K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
    [Crossref]
  4. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  5. Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34(17), 2551–2553 (2009).
    [Crossref] [PubMed]
  6. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
    [Crossref]
  7. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]
  8. X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  9. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref] [PubMed]
  10. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
    [Crossref]
  11. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
    [Crossref]
  12. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  13. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  14. W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
    [Crossref]
  15. A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
    [Crossref]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  17. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
    [Crossref] [PubMed]
  18. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
    [Crossref] [PubMed]
  19. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  20. Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
    [Crossref]
  21. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  22. S. Lee, K. Kim, S. Kim, H. Park, K. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6 (2015).
    [Crossref]
  23. S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
    [Crossref] [PubMed]
  24. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [Crossref] [PubMed]
  25. S. Wang, S. Wang, and Y. Zhang, “Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam,” Opt. Express 26(5), 5461–5468 (2018).
    [Crossref] [PubMed]
  26. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
    [Crossref]
  27. Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
    [Crossref]
  28. X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
    [Crossref]
  29. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
    [Crossref] [PubMed]
  30. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  31. N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
    [Crossref] [PubMed]
  32. Y. Liu and X. Zhang, “Spin-based resonant effect and focusing lens of light by dielectric nanoparticles,” Appl. Phys. Lett. 102(14), 141109 (2013).
    [Crossref]
  33. S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
    [Crossref] [PubMed]
  34. S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
    [Crossref]
  35. E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
    [Crossref]
  36. P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
    [Crossref] [PubMed]
  37. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
    [Crossref] [PubMed]
  38. S. Wang, X. Wang, and Y. Zhang, “Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface,” Opt. Express 25(20), 23589–23596 (2017).
    [Crossref] [PubMed]
  39. X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
    [Crossref]
  40. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
    [Crossref] [PubMed]
  41. Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
    [Crossref]
  42. X. Zhou, L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, “Large in-plane asymmetric spin angular shifts of a light beam near the critical angle,” Opt. Lett. 44(2), 207–210 (2019).
    [Crossref] [PubMed]
  43. T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17(20), 17483–17490 (2009).
    [Crossref] [PubMed]
  44. S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
    [Crossref] [PubMed]

2019 (2)

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

X. Zhou, L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, “Large in-plane asymmetric spin angular shifts of a light beam near the critical angle,” Opt. Lett. 44(2), 207–210 (2019).
[Crossref] [PubMed]

2018 (3)

S. Wang, S. Wang, and Y. Zhang, “Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam,” Opt. Express 26(5), 5461–5468 (2018).
[Crossref] [PubMed]

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

2017 (4)

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

S. Wang, X. Wang, and Y. Zhang, “Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface,” Opt. Express 25(20), 23589–23596 (2017).
[Crossref] [PubMed]

2016 (3)

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

2015 (9)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

S. Lee, K. Kim, S. Kim, H. Park, K. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6 (2015).
[Crossref]

S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

2013 (5)

Y. Liu and X. Zhang, “Spin-based resonant effect and focusing lens of light by dielectric nanoparticles,” Appl. Phys. Lett. 102(14), 141109 (2013).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

2012 (4)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

2011 (3)

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

2010 (1)

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2007 (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Ambrosio, A.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Archambault, A.

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Balram, K. C.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Blanchard, R.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Brongersma, M. L.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Capasso, F.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chen, L.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Chen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Cheng, C.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Cheng, Q.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Cheng, S.

Cho, S. W.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Danner, A.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Ding, H.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Fang, Z.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Genevet, P.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34(17), 2551–2553 (2009).
[Crossref] [PubMed]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Greffet, J. J.

Gu, M.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Hasman, E.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

He, C.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

He, H.

He, Q.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Hong, J.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Hong, M.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Hu, Q.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Huang, K.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Kang, M.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Karimi, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Ke, Y.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Kim, H.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kim, K.

Kim, S.

Kivshar, Y. S.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Kleiner, V.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Lee, B.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

S. Lee, K. Kim, S. Kim, H. Park, K. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6 (2015).
[Crossref]

S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lee, G.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Lee, G. Y.

Lee, K.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Lee, S.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

S. Lee, K. Kim, S. Kim, H. Park, K. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6 (2015).
[Crossref]

Lee, S. Y.

S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lee, Y.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Li, J.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

Li, X.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Li, Y.

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Ling, X.

X. Zhou, L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, “Large in-plane asymmetric spin angular shifts of a light beam near the critical angle,” Opt. Lett. 44(2), 207–210 (2019).
[Crossref] [PubMed]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Ling, X. H.

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Liu, C.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Liu, H.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

Liu, W.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Liu, Y.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Y. Liu and X. Zhang, “Spin-based resonant effect and focusing lens of light by dielectric nanoparticles,” Appl. Phys. Lett. 102(14), 141109 (2013).
[Crossref]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Luo, H.

X. Zhou, L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, “Large in-plane asymmetric spin angular shifts of a light beam near the critical angle,” Opt. Lett. 44(2), 207–210 (2019).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Luo, H. L.

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Luo, W.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Ly-Gagnon, D. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Ma, L.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Mao, C.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Marquier, F.

Marrucci, L.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Mehmood, M. Q.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Mei, S.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Miller, D. A.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
[Crossref] [PubMed]

Nagali, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
[Crossref] [PubMed]

Nechayev, S.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
[Crossref] [PubMed]

Park, H.

S. Lee, K. Kim, S. Kim, H. Park, K. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6 (2015).
[Crossref]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Park, J.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Peng, Y.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Piccirillo, B.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Poddubny, A. N.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Qin, F.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Qin, Y.

Qiu, C. W.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Qu, S. L.

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

Ren, X.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Samusev, A. K.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Santamato, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Sciarrino, F.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

She, A.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Shitrit, N.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

Shu, W.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Sinev, I. S.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Slussarenko, S.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Song, E.

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Sun, H.

Sun, S.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Tanemura, T.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Teng, J.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Teperik, T. V.

Wahl, P.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

Wang, X.

Wang, X. K.

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wen, S.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Wen, S. C.

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

White, J. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Wintz, D.

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xie, J.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Xie, L.

Xu, W.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Xu, Z.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yu, Y. F.

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

Zang, X.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, D.

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Zhang, R.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Y. Liu and X. Zhang, “Spin-based resonant effect and focusing lens of light by dielectric nanoparticles,” Appl. Phys. Lett. 102(14), 141109 (2013).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhang, Y.

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

S. Wang, S. Wang, and Y. Zhang, “Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam,” Opt. Express 26(5), 5461–5468 (2018).
[Crossref] [PubMed]

S. Wang, X. Wang, and Y. Zhang, “Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface,” Opt. Express 25(20), 23589–23596 (2017).
[Crossref] [PubMed]

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

Zhang, Z.

Zhao, F.

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

Zhong, F.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

Zhou, L.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Zhou, X.

X. Zhou, L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, “Large in-plane asymmetric spin angular shifts of a light beam near the critical angle,” Opt. Lett. 44(2), 207–210 (2019).
[Crossref] [PubMed]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Zhou, X. X.

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Zhu, S.

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

Zhu, X.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Zhu, Y.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Zhuang, S.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Zu, S.

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Adv. Opt. Mater. (2)

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7(3), 1801328 (2019).
[Crossref]

Appl. Phys. Lett. (3)

Y. Liu and X. Zhang, “Spin-based resonant effect and focusing lens of light by dielectric nanoparticles,” Appl. Phys. Lett. 102(14), 141109 (2013).
[Crossref]

X. X. Zhou, X. H. Ling, H. L. Luo, and S. C. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Opt. (1)

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Laser Photonics Rev. (2)

A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, “Enhanced photonic spin Hall effect with subwavelength topological edge states,” Laser Photonics Rev. 10(4), 656–664 (2016).
[Crossref]

E. Song, S. Lee, J. Hong, K. Lee, Y. Lee, G. Lee, H. Kim, and B. Lee, “A double-lined metasurface for plasmonic complex-field generation,” Laser Photonics Rev. 10(2), 299–306 (2016).
[Crossref]

Light Sci. Appl. (2)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Nano Lett. (5)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref] [PubMed]

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12(3), 1620–1623 (2012).
[Crossref] [PubMed]

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Nanoscale (1)

S. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Danner, and C. W. Qiu, “On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits,” Nanoscale 8(4), 2227–2233 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Xiao, F. Zhong, H. Liu, S. Zhu, and J. Li, “Flexible coherent control of plasmonic spin-Hall effect,” Nat. Commun. 6(1), 8360 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, “Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial,” Nat. Nanotechnol. 10(9), 804–809 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Nature (2)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

X. Li, R. Zhang, Y. Zhang, L. Ma, C. He, X. Ren, C. Liu, and C. Cheng, “Slit width oriented polarized wavefields transition involving plasmonic and photonic modes,” New J. Phys. 20(6), 063037 (2018).
[Crossref]

Opt. Commun. (1)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1–3), 45–54 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (3)

S. Wang, X. K. Wang, F. Zhao, S. L. Qu, and Y. Zhang, “Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons,” Phys. Rev. A 91(5), 053812 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Phys. Rev. B (1)

Y. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95(8), 081406 (2017).
[Crossref]

Phys. Rev. Lett. (3)

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 83901–83904 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Science (3)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of a subwavelength rectangular slit (a) illuminated by circularly polarized light, (b) and (c) are the amplitude and phase distribution for left circularly polarized (LCP) light and right circularly polarized (RCP) light, respetively. (d) shows an orthogonal slit pair, (e) and (f) are the corresponding amplitude and phase distribution for different orientation angles α.
Fig. 2
Fig. 2 The spiral phase for SPPs generated by the semicircular slit plasmonic lens (a). The schematic diagram of the designed semicircular SPPs lens consisted of orthogonal slit pairs (c) and the corresponding total spiral phase including intrinsic spiral phase σ θ and additional spiral phase σ 2α (b).
Fig. 3
Fig. 3 Simulated SPPs intensity distributions for the m = 0, 1, 2, 3, 4, 5 semicircular plasmonic lenses illuminated by LCP (a) and RCP (b) light. The SPPs focuses deviate gradually from the center with the increase of m.
Fig. 4
Fig. 4 Transverse profiles of the SPPs focus generated by LCP (a) and RCP (b) light. (c) and (d) show the linear relation between the displacement of the SPPs focuses and m.
Fig. 5
Fig. 5 (a) For negative an m = −4 lens, the displacements of SPPs focuses generated by LCP and RCP light will be reversed. (b) The spiral phase disappears and the SPPs focusing is spin-independent when m = −1. And m can also be decimal (c), which means the displacement of the SPPs can change continuously. (d) is the SPPs focuses generated by a r = 2.5 μm semicircular lens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E sp σ ± =sinαexp(i σ α) exp(i k sp r+i σ ± π/2 ) r ,
E sp σ ± =exp(i σ 2α) exp(i k sp r) r .
E sp σ ± =exp[ i σ (θ+2α) ].
Φ sp σ ± = σ (1+m)θ.
d m = σ (m+1) d 0 = Φ sp σ ± π d 0 .

Metrics