Abstract

The design of transparent optical materials with stimulated Brillouin scattering (SBS) suppression is a topic of current interest. We measured two-photon absorption (2PA) cross-section σ2PA and Brillouin gain factor gB of a suspension of hexagonal boron nitride (hBN) in N-methyl-2-pyrrolidone at the second harmonic of a Nd:YAG laser. SBS exhibits a significant quenching with hBN concentration, like previously observed in graphene suspension. The melting of hBN flakes due to a large 2PA and the related changes in the acoustic damping coefficient explain the quenching mechanism.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Competition between stimulated Raman and Brillouin scattering processes in CF4 gas

Lior Ben Yehud, Daniel Belker, Gad Ravnitzki, and Amiel A. Ishaaya
Opt. Lett. 39(4) 1026-1029 (2014)

Experimental investigation on the competition between wideband stimulated Brillouin scattering and forward stimulated Raman scattering in water

Jiulin Shi, Wei Chen, Xiaofeng Mo, Juan Liu, Xingdao He, and Kecheng Yang
Opt. Lett. 37(14) 2988-2990 (2012)

Stimulated Brillouin scattering in diffusion-driven semiconductors

A. Neogi
J. Opt. Soc. Am. B 11(11) 2246-2251 (1994)

References

  • View by:
  • |
  • |
  • |

  1. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  2. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
    [Crossref]
  3. W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
    [Crossref]
  4. J. Zhu, X. Cheng, Y. Liu, R. Wang, M. Jiang, D. Li, B. Lu, and Z. Ren, “Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber,” Photon. Res. 7(1), 8–13 (2019).
    [Crossref]
  5. E. Giacoumidis, A. Choudhary, E. Magi, D. Marpaung, K. Vu, P. Ma, D.-Y. Choi, S. Madden, B. Corcoran, M. Pelusi, and B. J. Eggleton, “Chip-based Brillouin processing for carrier recovery in self-coherent optical communications,” Optica 5(10), 1191–1199 (2018).
    [Crossref]
  6. J. Cui, H. Dang, K. Feng, W. Yang, T. Geng, Y. Hu, Y. Zhang, D. Jiang, X. Chen, and J. Tan, “Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser,” Photon. Res. 5(3), 233–238 (2017).
    [Crossref]
  7. C. Liu, J. Liu, Y. Zhang, Y. Hou, S. Qi, X. Feng, and P. Wang, “Stimulated Brillouin scattering suppression of thulium-doped fiber amplifier with fiber superfluorescent seed source,” Opt. Express 25(9), 9569–9578 (2017).
    [Crossref] [PubMed]
  8. I. M. Kislyakov, J.-M. Nunzi, X. Zhang, Y. Xie, V. N. Bocharov, and J. Wang, “Stimulated Brillouin scattering in dispersed graphene,” Opt. Express 26(26), 34346–34365 (2018).
    [Crossref] [PubMed]
  9. Q. Ouyang, K. Zhang, W. Chen, F. Zhou, and W. Ji, “Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film,” Opt. Lett. 41(7), 1368–1371 (2016).
    [Crossref] [PubMed]
  10. Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
    [Crossref]
  11. P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
    [Crossref]
  12. A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
    [Crossref] [PubMed]
  13. G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
    [Crossref]
  14. A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
    [Crossref]
  15. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
    [Crossref] [PubMed]
  16. C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
    [Crossref]
  17. H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
    [Crossref]
  18. R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
    [Crossref] [PubMed]
  19. V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
    [Crossref]
  20. W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, 97th ed. (CRC, 2017).
  21. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publishing, 2002).
  22. N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).
  23. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  24. D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes,” Phys. Rev. B 1(1), 31–43 (1970).
    [Crossref]
  25. T. D. Rossing, ed., Springer Handbook of Acoustics (Springer Science+Business Media, 2007).
  26. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  27. C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32(9), 1968–1978 (2015).
    [Crossref]
  28. Y. Mizuno and K. Nakamura, “Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors,” Polymers (Basel) 3(2), 886–898 (2011).
    [Crossref]

2019 (2)

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

J. Zhu, X. Cheng, Y. Liu, R. Wang, M. Jiang, D. Li, B. Lu, and Z. Ren, “Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber,” Photon. Res. 7(1), 8–13 (2019).
[Crossref]

2018 (5)

E. Giacoumidis, A. Choudhary, E. Magi, D. Marpaung, K. Vu, P. Ma, D.-Y. Choi, S. Madden, B. Corcoran, M. Pelusi, and B. J. Eggleton, “Chip-based Brillouin processing for carrier recovery in self-coherent optical communications,” Optica 5(10), 1191–1199 (2018).
[Crossref]

I. M. Kislyakov, J.-M. Nunzi, X. Zhang, Y. Xie, V. N. Bocharov, and J. Wang, “Stimulated Brillouin scattering in dispersed graphene,” Opt. Express 26(26), 34346–34365 (2018).
[Crossref] [PubMed]

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

2017 (3)

2016 (3)

Q. Ouyang, K. Zhang, W. Chen, F. Zhou, and W. Ji, “Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film,” Opt. Lett. 41(7), 1368–1371 (2016).
[Crossref] [PubMed]

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

2015 (2)

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32(9), 1968–1978 (2015).
[Crossref]

2014 (1)

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

2013 (1)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

2011 (2)

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors,” Polymers (Basel) 3(2), 886–898 (2011).
[Crossref]

2010 (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

1999 (1)

V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
[Crossref]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1983 (1)

N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).

1970 (1)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes,” Phys. Rev. B 1(1), 31–43 (1970).
[Crossref]

Aharonovich, I.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

Ajayan, P. M.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Amara, H.

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Assefa, N.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Attaccalite, C.

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Basov, D. N.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Belle, B. D.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Biswas, S.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Blake, P.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Bocharov, V. N.

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Britnell, L.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Caldwell, J. D.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Chatterjee, U.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Chatzakis, I.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Chen, W.

Chen, X.

Cheng, X.

Choi, D.-Y.

Choudhary, A.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Corcoran, B.

Cui, J.

Dai, S.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Dang, H.

Dong, Y.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Ducastelle, F.

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Edgar, J. H.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Eggleton, B. J.

Ellis, C. T.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Eyley, S.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Fan, X.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Feng, K.

Feng, X.

Fogler, M. M.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Geim, A. K.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Geng, T.

Giacoumidis, E.

Giles, A. J.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Gorbachev, R. V.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Grüning, M.

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Gutsche, P.

Hao, X.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Heinz, T. F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Hill, E. W.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Hoffman, T.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Holzapfel, W. B.

V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
[Crossref]

Hou, Y.

Hu, Y.

Jalil, R.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Ji, W.

Jiang, D.

Jiang, M.

Kaiser, W.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes,” Phys. Rev. B 1(1), 31–43 (1970).
[Crossref]

Kislyakov, I. M.

Klushin, N. D.

N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Kole, A. K.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Kumar, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Kumbhakar, P.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Latil, S.

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Li, D.

Lin, J.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Lindsay, L.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Liu, C.

Liu, J.

Liu, S.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Low, T.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Lu, B.

Ma, P.

Madden, S.

Magi, E.

Marpaung, D.

Martin-Moreno, L.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Mizuno, Y.

Y. Mizuno and K. Nakamura, “Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors,” Polymers (Basel) 3(2), 886–898 (2011).
[Crossref]

Nair, R. R.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Nakamura, K.

Y. Mizuno and K. Nakamura, “Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors,” Polymers (Basel) 3(2), 886–898 (2011).
[Crossref]

Narayanan, T. N.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Novoselov, K. S.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Nunzi, J.-M.

Ouyang, Q.

Pant, R.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Parajuli, P.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Pelusi, M.

Podila, R.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Pogodin, V. P.

N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).

Pohl, D.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes,” Phys. Rev. B 1(1), 31–43 (1970).
[Crossref]

Poulton, C. G.

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32(9), 1968–1978 (2015).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Qi, S.

Rao, A. M.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Reinecke, T. L.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Ren, Z.

Riaz, I.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Sahoo, K. R.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Schell, A. W.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

Solozhenko, V. L.

V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
[Crossref]

Steel, M. J.

Taha-Tijerina, J.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Takashima, H.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

Takeuchi, S.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

Tan, J.

Taniguchi, T.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Thielemans, W.

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Tischler, J. G.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Tiwary, C. S.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Tour, J. M.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Tran, T. T.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

Turkevich, V. Z.

V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
[Crossref]

Vinod, S.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Vorobev, A. F.

N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).

Vu, K.

Vurgaftman, I.

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

Wang, G.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Wang, J.

Wang, P.

Wang, R.

Wang, W. C.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Wang, Z.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Watanabe, K.

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Wolff, C.

Wu, Y.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Xie, Y.

Xu, S. H.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Xu, X.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Yan, Q.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Yan, Z.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Yang, W.

Yang, Z. M.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Yu, T.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Zhang, F.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Zhang, K.

Zhang, Q. Y.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, G.

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

Zhou, B.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Zhou, F.

Zhou, H.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Zhu, J.

J. Zhu, X. Cheng, Y. Liu, R. Wang, M. Jiang, D. Li, B. Lu, and Z. Ren, “Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber,” Photon. Res. 7(1), 8–13 (2019).
[Crossref]

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Adv. Opt. Mater. (2)

G. Zhao, F. Zhang, Y. Wu, X. Hao, Z. Wang, and X. Xu, “One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance,” Adv. Opt. Mater. 4(1), 141–146 (2016).
[Crossref]

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3(6), 828–835 (2015).
[Crossref]

Adv. Opt. Photonics (2)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

APL Photonics (1)

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, “Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers,” APL Photonics 1(9), 091302 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, “Refined phase diagram of boron nitride,” J. Phys. Chem. B 103(15), 2903–2905 (1999).
[Crossref]

Nano Res. (1)

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, and J. M. Tour, “High thermal conductivity of suspended few-layer hexagonal boron nitride sheets,” Nano Res. 7(8), 1232–1240 (2014).
[Crossref]

Nat. Mater. (2)

A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, and J. D. Caldwell, “Ultralow-loss polaritons in isotopically pure boron nitride,” Nat. Mater. 17(2), 134–139 (2018).
[Crossref] [PubMed]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Dong, P. Parajuli, A. M. Rao, W. Thielemans, S. Eyley, K. R. Sahoo, T. N. Narayanan, and R. Podila, “Intrinsic five-photon non-linear absorption of two-dimensional BN and its conversion to two-photon absorption in the presence of photo-induced defects,” Opt. Mater. 86, 414–420 (2018).
[Crossref]

Optica (1)

Photon. Res. (2)

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Phys. Rev. B (2)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes,” Phys. Rev. B 1(1), 31–43 (1970).
[Crossref]

C. Attaccalite, M. Grüning, H. Amara, S. Latil, and F. Ducastelle, “Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride,” Phys. Rev. B 98(16), 165126 (2018).
[Crossref]

Polymers (Basel) (1)

Y. Mizuno and K. Nakamura, “Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors,” Polymers (Basel) 3(2), 886–898 (2011).
[Crossref]

Prog. Mater. Sci. (1)

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Small (1)

R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small 7(4), 465–468 (2011).
[Crossref] [PubMed]

Zh. Fiz. Khim. (1)

N. D. Klushin, V. P. Pogodin, and A. F. Vorobev, “Thermal conductivity of solutions of sodium, potassium, and caesium iodides in n-methyl-2-pyrrolidinone in the temperature range 298-348 K,” Zh. Fiz. Khim. 57, 2873–2875 (1983).

Other (4)

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, 97th ed. (CRC, 2017).

Ya. B. Zel’dovich and Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publishing, 2002).

T. D. Rossing, ed., Springer Handbook of Acoustics (Springer Science+Business Media, 2007).

B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) TEM image, (b) HRTEM image and (c) corresponding FFT pattern, (d) Raman and (e) absorption spectrum of BN nanoflakes. Inset shows concentration dependence of absorbance at 532 nm.
Fig. 2
Fig. 2 (a) Transmittance vs. input energy for different dilutions of BN suspension (legend shows the linear absorption coefficient), and (b) corresponding 2PA coefficients vs. BN concentration. Inset shows Z-scan of the suspension normalized transmittance with ρBN = 161 mg/l in 2 mm cell at E = 4.0 mJ.
Fig. 3
Fig. 3 Photograph of the cell with 60 mg/l-concentration BN suspension irradiated with pulse energy (a) below and (b) above the SBS threshold; (c) corresponding side-scattering into 1.4 sr solid angle vs. input energy.
Fig. 4
Fig. 4 (a) SBS energy vs. input energy for different BN concentration (given in legends), and (b) corresponding Brillouin gain factor vs. suspension absorption coefficient: points – experiment, solid curve – simulation with ΔΓ = 14 cm, dashed – simulation with Δn = −5 cm, dashed dot – simulation for graphene suspension with both ΔΓ = 50 cm and Δn = −1.55 cm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( E ) = T l i n ( 1 β 2PA L 4w 0 2 τ E ) .
Δ T ( t ) = Δ E a b s ( t ) C p m f l = 3 4 π F ( t ) σ NL ( t ) C p w 0 2 ,
F ( t ) = 1 I 0 0 t I ( t ) d t ,
σ NL ( t ) = σ 2PA λI ( t ) h c M BN .
g B e = ( γ e ω 0 ) 2 ε 0 2 c 3 n ρ v ac Γ B γ e γ t ω 0 2 ε 0 2 c 3 n ρ v ac Γ B ,

Metrics