Abstract

Electromagnetic (EM) polarization control is a key issue in various studies on communication and imaging systems. Two-dimensional metasurfaces have been employed to realize polarization conversion based on chiral, anisotropic structures. Herein, we employ Huygens’ metasurfaces that utilize both electric and magnetic resonances when interacting with EM waves to realize polarization manipulation. Polarization conversion is achieved by introducing direct coupling between the equivalent electric and magnetic sources. A polarization conversion splitter as well as reflective and transmissive polarization convertors are designed and verified by simulations and experiments. The proposed polarization manipulation devices possess compact dimensions in the deep sub-wavelength regime and maintain good angular performance for oblique incidences up to 60°.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation

Tongjun Liu, Lirong Huang, Wei Hong, Yonghong Ling, Jing Luan, Yali Sun, and Weihua Sun
Opt. Express 25(14) 16332-16346 (2017)

Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect

Lei Zhu, Fan-Yi Meng, Liang Dong, Jia-Hui Fu, Fang Zhang, and Qun Wu
Opt. Express 21(26) 32099-32110 (2013)

Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials

Rui Xia, Xufeng Jing, Xincui Gui, Ying Tian, and Zhi Hong
Opt. Mater. Express 7(3) 977-988 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. E. H. Love, “I. The integration of the equations of propagation of electric waves,” Phil. Trans. Roy. Soc. London. Ser. A 197, 287–299 (1901).
  2. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
    [Crossref]
  3. R. W. Ziolkowski, “Low profile, broadside radiating, electrically small Huygens source antennas,” IEEE Access 3, 2644–2651 (2015).
    [Crossref]
  4. H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
    [Crossref]
  5. T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
    [Crossref]
  6. W. Lin and R. W. Ziolkowski, “Electrically small, low-profile, Huygens circularly polarized antenna,” IEEE Trans. Antenn. Propag. 66(2), 636–643 (2018).
    [Crossref]
  7. B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
    [Crossref]
  8. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  9. A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
    [Crossref] [PubMed]
  10. M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
    [Crossref]
  11. B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antenn. Propag. 63(12), 5500–5511 (2015).
    [Crossref]
  12. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  13. M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
    [Crossref]
  14. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [Crossref] [PubMed]
  15. L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
    [Crossref]
  16. S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
    [Crossref]
  17. M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
    [Crossref]
  18. W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
    [Crossref]
  19. Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
    [Crossref]
  20. F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
    [Crossref] [PubMed]
  21. J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
    [Crossref] [PubMed]
  22. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  23. B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
    [Crossref]
  24. Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
    [Crossref]
  25. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  26. R. C. Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31(7), 488–493 (1941).
    [Crossref]
  27. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  28. K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
    [Crossref]
  29. M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  30. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
    [Crossref]
  31. X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
    [Crossref] [PubMed]
  32. A. Epstein and G. V. Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A50 (2016).
    [Crossref]
  33. Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).
  34. Z. Fan and G. Shvets, “Ultrathin wave plates based on bi-resonant silicon Huygens’ metasurfaces,” arXiv 1712.10064 (2017).
  35. Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
    [Crossref]
  36. B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
    [Crossref]
  37. F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
    [Crossref]

2018 (3)

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

W. Lin and R. W. Ziolkowski, “Electrically small, low-profile, Huygens circularly polarized antenna,” IEEE Trans. Antenn. Propag. 66(2), 636–643 (2018).
[Crossref]

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

2017 (1)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

2016 (7)

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
[Crossref] [PubMed]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

A. Epstein and G. V. Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A50 (2016).
[Crossref]

F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
[Crossref]

2015 (7)

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antenn. Propag. 63(12), 5500–5511 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

R. W. Ziolkowski, “Low profile, broadside radiating, electrically small Huygens source antennas,” IEEE Access 3, 2644–2651 (2015).
[Crossref]

2014 (2)

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

2013 (6)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

2012 (3)

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

2011 (1)

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

2010 (2)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2004 (1)

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

1941 (1)

1936 (1)

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
[Crossref]

1901 (1)

A. E. H. Love, “I. The integration of the equations of propagation of electric waves,” Phil. Trans. Roy. Soc. London. Ser. A 197, 287–299 (1901).

Abbosh, A. M.

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

Alitalo, P.

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

Alù, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Amal, F.

F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Cao, W. P.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Carson, J. R.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
[Crossref]

Che, W.

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Chen, L.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

Choi, W. W.

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

Cui, T. J.

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Da, X.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Dyke, A.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
[Crossref] [PubMed]

A. Epstein and G. V. Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A50 (2016).
[Crossref]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Epstein, A.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
[Crossref] [PubMed]

A. Epstein and G. V. Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A50 (2016).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fang, Y.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antenn. Propag. 63(12), 5500–5511 (2015).
[Crossref]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Fu, Q.

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Gao, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Gong, S.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Guo, Y. J.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Hadjira, A. B.

F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
[Crossref]

Han, K. J.

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

Han, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hao, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Haq, S.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Hui, H. T.

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

Jia, N.

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Jia, S. L.

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Jiao, Y. C.

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

Jones, R. C.

Jung, J.

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

Karilainen, A. O.

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

Kim, M.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Le, T. T.

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

Le Coq, L.

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Lee, B.

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

Lee, Y. W.

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

Legay, H.

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

Lei, L.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

Lei, X.

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

Li, F.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

Li, H. O.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Li, K.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Li, W.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Liang, Z.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Lin, B.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Lin, W.

W. Lin and R. W. Ziolkowski, “Electrically small, low-profile, Huygens circularly polarized antenna,” IEEE Trans. Antenn. Propag. 66(2), 636–643 (2018).
[Crossref]

Liu, C.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

Liu, F.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Liu, M.

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

Liu, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Love, A. E. H.

A. E. H. Love, “I. The integration of the equations of propagation of electric waves,” Phil. Trans. Roy. Soc. London. Ser. A 197, 287–299 (1901).

Lu, Y.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

Luo, C.

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Ma, H. F.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Mead, S. P.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
[Crossref]

Mehadji, A.

F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
[Crossref]

Meng, W.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Muhammad, S. A.

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Nguyen-Trong, N.

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

Niemi, T.

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Park, H. C.

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Powell, D. A.

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

Qiu, C. W.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Ren, L. S.

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Sauleau, R.

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

Schelkunoff, S. A.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
[Crossref]

Shadrivov, I. V.

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

Shang, J. Y.

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

Song, K.

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Sun, B.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

Sun, L.

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Sun, X.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

Tam, K. W.

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

Tran, H. H.

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

Tretyakov, S. A.

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Valerio, G.

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

Wan, X.

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

Wang, B.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

Wang, Y.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Wong, A. M. H.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Wong, J. P. S.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
[Crossref] [PubMed]

Wu, J. M.

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

Yang, W.

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Zarate, Y.

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

Zhang, G. Q.

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

Zhang, L.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Zhang, S.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Zhang, W.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

Zhao, G.

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Zhao, J. J.

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

Zhao, M. Y.

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

Zhao, X.

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Zhao, Y. J.

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

Zhou, J.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Zhu, B. O.

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antenn. Propag. 63(12), 5500–5511 (2015).
[Crossref]

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Zhu, Z.

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

Ziolkowski, R. W.

W. Lin and R. W. Ziolkowski, “Electrically small, low-profile, Huygens circularly polarized antenna,” IEEE Trans. Antenn. Propag. 66(2), 636–643 (2018).
[Crossref]

R. W. Ziolkowski, “Low profile, broadside radiating, electrically small Huygens source antennas,” IEEE Access 3, 2644–2651 (2015).
[Crossref]

Adv. Mater. (1)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High‐efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Appl. Phys. Lett. (4)

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109, 051901 (2016).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Bell Syst. Tech. J. (1)

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—Mathematical theory,” Bell Syst. Tech. J. 15(2), 310–333 (1936).
[Crossref]

Electron. Lett. (1)

W. Yang, K. W. Tam, W. W. Choi, W. Che, and H. T. Hui, “Polarisation rotation reflective surface based on artificial magnetic conductor and its application,” Electron. Lett. 50(21), 1500–1502 (2014).
[Crossref]

IEEE Access (1)

R. W. Ziolkowski, “Low profile, broadside radiating, electrically small Huygens source antennas,” IEEE Access 3, 2644–2651 (2015).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10, 407–410 (2011).
[Crossref]

M. Y. Zhao, G. Q. Zhang, X. Lei, J. M. Wu, and J. Y. Shang, “Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays,” IEEE Antennas Wirel. Propag. Lett. 12, 356–359 (2013).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for tansmitted phase of reflectionless metasurfaces with 2π coverage,” IEEE Photonics J. 7(3), 1–8 (2015).

IEEE Photonics Technol. Lett. (3)

Y. W. Lee, K. J. Han, J. Jung, and B. Lee, “Polarization-independent tunable fiber comb filter,” IEEE Photonics Technol. Lett. 16(9), 2066–2068 (2004).
[Crossref]

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating as two-port beam splitter,” IEEE Photonics Technol. Lett. 25(9), 863–866 (2013).
[Crossref]

F. Amal, A. B. Hadjira, and A. Mehadji, “Ultra-highly efficient 1×3 and 1×6 splitters for terahertz communication applications,” IEEE Photonics Technol. Lett. 28(13), 1434–1437 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (6)

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antenn. Propag. 63(12), 5500–5511 (2015).
[Crossref]

S. A. Muhammad, R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antenn. Propag. 61(3), 1032–1040 (2013).
[Crossref]

H. H. Tran, N. Nguyen-Trong, T. T. Le, A. M. Abbosh, and H. C. Park, “Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity,” IEEE Trans. Antenn. Propag. 66(7), 3741–3746 (2018).
[Crossref]

W. Lin and R. W. Ziolkowski, “Electrically small, low-profile, Huygens circularly polarized antenna,” IEEE Trans. Antenn. Propag. 66(2), 636–643 (2018).
[Crossref]

IET Microw. Antennas Propag. (1)

T. Niemi, P. Alitalo, A. O. Karilainen, and S. A. Tretyakov, “Electrically small Huygens source antenna for linear polarisation,” IET Microw. Antennas Propag. 6(7), 735–739 (2012).
[Crossref]

J. Appl. Phys. (1)

B. Lin, B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 183103 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7(1), 10360 (2016).
[Crossref] [PubMed]

Phil. Trans. Roy. Soc. London. Ser. A (1)

A. E. H. Love, “I. The integration of the equations of propagation of electric waves,” Phil. Trans. Roy. Soc. London. Ser. A 197, 287–299 (1901).

Phys. Rev. B Condens. Matter Mater. Phys. (1)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Phys. Rev. Lett. (3)

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Phys. Rev. X (2)

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, “Huygens’ meta-devices for parametric waves,” Phys. Rev. X 8(3), 031077 (2018).
[Crossref]

Sci. Rep. (3)

B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

X. Wan, S. L. Jia, T. J. Cui, and Y. J. Zhao, “Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces,” Sci. Rep. 6(1), 25639 (2016).
[Crossref] [PubMed]

Other (1)

Z. Fan and G. Shvets, “Ultrathin wave plates based on bi-resonant silicon Huygens’ metasurfaces,” arXiv 1712.10064 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of Huygens’ principle in the case of an electrically thin layer; (b) general equivalent electric and magnetic sources in the design of a Huygens’ metasurface; (c) schematic of the element of the polarization conversion device based on Huygens’ principle. When a y-polarized incident EM wave passes through the structure, currents will be induced in the loop. By guiding the induced current to the metallic wire pair along the x-axis, the formed electric dipole will radiate x-polarized waves secondary to both + z and –z directions.
Fig. 2
Fig. 2 (a) Configuration and detailed dimensions of the element of the proposed splitter; (b) schematic functions of the splitter for x- (yellow shaded area) and y-polarized (blue shaded area) incidences, where the inset shows the fabricated sample with an enlarged view of the metasurface element.
Fig. 3
Fig. 3 (a) Measurement setup for polarization conversion metasurfaces. (b) and (c) simulated and measured performance of the splitter for normal y- and x-polarized incidences, respectively. (d) and (e) show the measurement results of T_XY and R_XY for the oblique incidence angle along φ direction respectively, while, (f) and (g) for the oblique incidence along θ direction. “T_XY” and “R_XY” represent the transmission and reflection of x-polarized outgoing wave in the case of y-polarized incidence, respectively.
Fig. 4
Fig. 4 (a), (b) Surface currents on the element at 3.6GHz for y- and x-polarized incidences, respectively; (c), (d) magnetic field distributions on the YOZ plane at 3.6GHz for y- and x-polarized incidences, respectively.
Fig. 5
Fig. 5 (a) Configuration and detailed dimensions of the element for the reflective polarization convertor; (b) schematic of the function of the reflective polarization convertor, where the x-polarized incidence is represented as the yellow shaded areas, while y-polarized incidence as blue ones. The inset pictures show the fabricated sample and enlarged view of the element; (c) simulated and measured results of the co- and cross-polarized reflection coefficients for normal y-polarized incidence, while (d) for x-polarized incidence. The first and second letters represent the polarization of reflection and incidence, respectively. (e) and (f) measured cross-polarized reflection coefficients of the metasurface for y-polarized incidences in the case of oblique incidence along φ and θ directions, respectively.
Fig. 6
Fig. 6 (a) Configuration and detailed dimensions of the element of the transmissive polarization convertor; (b) schematic of the convertor, which is built by adding an x-oriented metallic grating in front of the previously designed splitter. The x- and y-polarized incidence are expressed as yellow and blue shaded areas, respectively. The fabricated sample with enlarged element view; (c) and (d) simulated and measured results for normal y- and x- polarized incidence, respectively. In the legends, “R” denotes the reflection, while “T” denotes transmission. The first and second letters behind underline represent the polarization of outgoing and incident wave, respectively. (e) and (f) measured cross-polarized transmissions of the metasurface for various oblique incidence angles of the y-polarized wave along φ and θ directions, respectively.

Tables (3)

Tables Icon

Table 1 Quantitative results for the polarization conversion splitter

Tables Icon

Table 2 Quantitative results for the reflective polarization convertor

Tables Icon

Table 3 Quantitative results for the transmissive polarization convertor

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ J e =n×( H 2 - H 1 ) J m =n×( E 2 - E 1 ) ,
J e = 1 η J m ,
E 2 =η H 1 H 2 = 1 η E 1 .
[ E otx E oty E orx E ory ]= [ 1 2 0 1 2 e jγ 2 2 2 2 0 2 2 0 ] T [ E ix E iy ],
[ E otx E oty E orx E ory ]= [ 0 0 0 1 0 0 1 0 ] T [ E ix E iy ].
[ E otx E oty E orx E ory ]= [ 0 0 1 e jτ 0 1 0 0 0 ] T [ E ix E iy ].

Metrics