Abstract

A high-power quantum-dot superluminescent diode is demonstrated under continuous-wave operation, with an output power of 137.5 mW and a corresponding spectral bandwidth of 21 nm. This represents not only the highest output power, but also a record-high power spectral density of 6.5 mW/nm for a CW-operated superluminescent diode in the 1.1 - 1.3 μm spectral region, marking more than a 6-fold increase with respect to the state of the art. The two-section contact layout of the reported device introduces additional degrees of freedom, which enable a wide tunability of the bandwidth and power depending on the desired application. A maximum bandwidth of 79 nm was recorded, with an output power of 1.4 mW. The high-power continuous-wave operation of this device would be particularly relevant for continuous, high-speed, high-sensitivity spectroscopy, imaging and sensing applications, as well as in optical communications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures

Stephanie Haggett, Michel Krakowski, Ivo Montrosset, and Maria Ana Cataluna
Opt. Express 22(19) 22854-22864 (2014)

High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication

Abdullah A. Alatawi, Jorge A. Holguin-Lerma, Chun Hong Kang, Chao Shen, Ram Chandra Subedi, Abdulrahman M. Albadri, Ahmed Y. Alyamani, Tien Khee Ng, and Boon S. Ooi
Opt. Express 26(20) 26355-26364 (2018)

Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers

Ksenia A. Fedorova, Maria Ana Cataluna, Igor Krestnikov, Daniil Livshits, and Edik U. Rafailov
Opt. Express 18(18) 19438-19443 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
    [Crossref]
  2. R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
    [Crossref]
  3. W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
    [Crossref] [PubMed]
  4. K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photonics Technol. Lett. 7(9), 1025–1027 (1995).
    [Crossref]
  5. X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011).
    [Crossref] [PubMed]
  6. K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
    [Crossref] [PubMed]
  7. A. Aalto, G. Genty, T. Laurila, and J. Toivonen, “Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources,” Opt. Express 23(19), 25225–25234 (2015).
    [Crossref] [PubMed]
  8. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
    [Crossref]
  9. M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
    [Crossref]
  10. Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
    [Crossref]
  11. X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
    [Crossref] [PubMed]
  12. X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
    [Crossref] [PubMed]
  13. X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
    [Crossref]
  14. H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
    [Crossref]
  15. P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
    [Crossref]
  16. M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
    [Crossref]
  17. S. Haggett, M. Krakowski, I. Montrosset, and M. A. Cataluna, “High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures,” Opt. Express 22(19), 22854–22864 (2014).
    [Crossref] [PubMed]
  18. S. E. White and M. A. Cataluna, “Unlocking spectral versatility from broadly−tunable quantum−dot lasers,” Photonics 2(2), 719–744 (2015).
    [Crossref]
  19. B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
    [Crossref]
  20. T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
    [Crossref]
  21. M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
    [Crossref]
  22. E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
    [Crossref]
  23. E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
    [Crossref]
  24. Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
    [Crossref]
  25. M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
    [Crossref]
  26. M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
    [Crossref]
  27. R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
    [Crossref]
  28. H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
    [Crossref]
  29. F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
    [Crossref]
  30. M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
    [Crossref]
  31. S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
    [Crossref] [PubMed]
  32. Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
    [Crossref] [PubMed]
  33. Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
    [Crossref]
  34. N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
    [Crossref]
  35. M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
    [Crossref] [PubMed]
  36. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
    [Crossref] [PubMed]
  37. S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
    [Crossref]
  38. Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
    [Crossref]
  39. M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
    [Crossref]
  40. Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).
  41. C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
    [Crossref]
  42. M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
    [Crossref]
  43. J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
    [Crossref]
  44. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
    [Crossref]
  45. M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
    [Crossref]
  46. Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
    [Crossref]
  47. S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
    [Crossref]
  48. I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
    [Crossref]
  49. N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
    [Crossref]
  50. Y. Zhou, J. Zhang, Y. Ning, Y. Zeng, J. Zhang, X. Zhang, L. Qin, and L. Wang, “Bimodal-sized quantum dots for broad spectral bandwidth emitter,” Opt. Express 23(25), 32230–32237 (2015).
    [Crossref] [PubMed]
  51. H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
    [Crossref]
  52. G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
    [Crossref]
  53. P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
    [Crossref]
  54. T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
    [Crossref]
  55. M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).
  56. X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
    [Crossref]

2017 (2)

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
[Crossref] [PubMed]

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

2016 (3)

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

2015 (5)

S. E. White and M. A. Cataluna, “Unlocking spectral versatility from broadly−tunable quantum−dot lasers,” Photonics 2(2), 719–744 (2015).
[Crossref]

A. Aalto, G. Genty, T. Laurila, and J. Toivonen, “Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources,” Opt. Express 23(19), 25225–25234 (2015).
[Crossref] [PubMed]

Y. Zhou, J. Zhang, Y. Ning, Y. Zeng, J. Zhang, X. Zhang, L. Qin, and L. Wang, “Bimodal-sized quantum dots for broad spectral bandwidth emitter,” Opt. Express 23(25), 32230–32237 (2015).
[Crossref] [PubMed]

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

2014 (2)

2013 (1)

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

2012 (7)

I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
[Crossref]

Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
[Crossref]

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

2011 (4)

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011).
[Crossref] [PubMed]

2010 (3)

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

2009 (6)

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
[Crossref]

2008 (3)

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
[Crossref]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

2007 (4)

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

2006 (3)

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
[Crossref]

2005 (2)

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

2004 (1)

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

2001 (1)

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

1999 (2)

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

1998 (2)

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

1995 (1)

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photonics Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

1994 (1)

P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

1991 (1)

Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
[Crossref]

1984 (1)

R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[Crossref]

Aalto, A.

Alexander, R.

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Alferov, Z. I.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Alhashim, H. H.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

An, Q.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Andreeva, E. V.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

Asano, H.

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

Bardella, P.

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
[Crossref]

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).

Barrios, P. J.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Bayleyegn, M. D.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Bedarev, D. A.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Bergh, R.

R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[Crossref]

Bimberg, D.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Blake, G. A.

Blazek, M.

Blood, P.

P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Bo, B.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Bonesi, M.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Cassidy, D. T.

J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
[Crossref]

Cataluna, M. A.

Chang, R. P. H.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Chang, W. H.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Chen, S.

Childs, D. T.

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Childs, D. T. D.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Choi, W. J.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Chung, Y. C.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Cohen, A. B.

Cossel, K. C.

Crotti, C.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Crowley, M. T.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Cullis, A. G.

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Dang, G. T.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Denzer, W.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Deppe, D. G.

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

Devane, G.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Dimas, C. E.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Djie, H. S.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Du, G.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Dubois, A.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Egorov, A. Y.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Elsäßer, W.

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Elsässer, W.

Emawy, M. E.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Evans, P. A.

P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Fa-Jie, H.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Fei-Fei, W.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Fimland, B. O.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Finneran, I. A.

Fiore, A.

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

Gao, X.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Genty, G.

Gioannini, M.

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Greenwood, P. D. L.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Groom, K. M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Guo, W.

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Haffouz, S.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Haggett, S.

Hamilton, M. L.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Hamp, M. J.

J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
[Crossref]

Han, I. K.

Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
[Crossref]

Han, W.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Hancock, G.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Harada, Y.

I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
[Crossref]

Hartmann, S.

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Heng, W.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Hogg, R. A.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Hopkinson, M.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Hou, H.

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Hu, F.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

Huang, H.

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

Hugues, M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

Hwang, J. C. M.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Ikeda, N.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Inoue, T.

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

Islam, M.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Jiang, Q.

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Jiang, X.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Jin, P.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

Jung, D. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Kamioka, H.

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Kennedy, K.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Khan, M. Z. M.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Kim, J. H.

Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
[Crossref]

Kim, K. W.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Kita, T.

I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
[Crossref]

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

Kop’ev, P. S.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Kovsh, A. R.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Krakowski, M.

Krstajic, N.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Langley, C. E.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Lapin, P. I.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

Lapointe, J.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Laurila, T.

Ledentsov, N. N.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Lee, C.-H.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Lee, C.-S.

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Lee, Y. J.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Lefevre, H.

R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[Crossref]

Lester, L. F.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Li, H.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Li, X.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011).
[Crossref] [PubMed]

Li, X. K.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Lim, J. Y.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Lin, C.-F.

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

Liou, K.-Y.

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photonics Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

Liu, G.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Liu, H.

Liu, H. Y.

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Liu, N.

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

Liu, Y.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Lu, Z.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Luxmoore, I. J.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Lv, X.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Lv, X. Q.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

MacNeil, S.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Makhlouf, H.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Maksimov, M. V.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Maleev, N. A.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Markus, A.

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Matcher, S. J.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Mikami, O.

Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
[Crossref]

Montrosset, I.

S. Haggett, M. Krakowski, I. Montrosset, and M. A. Cataluna, “High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures,” Opt. Express 22(19), 22854–22864 (2014).
[Crossref] [PubMed]

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
[Crossref]

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).

Morishima, Y.

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Mukai, A.

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

Mukherjee, S. D.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Murphy, T. E.

Musikhin, Y. G.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Naderi, N. A.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Newbury, N. R.

Newell, T. C.

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Ng, T. K.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Nilsen, T. A.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Ning, Y.

Noguchi, Y.

Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
[Crossref]

Occhi, L.

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

Ohgoh, T.

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

Ohsato, H.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Ooi, B. S.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Ooi, B.-S.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Ozaki, N.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Park, J. H.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Park, M. H.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Park, S. J.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Patel, N.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Peng, J.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Peverall, R.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Plamann, K.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Poitras, D.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Prokhorov, V. V.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

Qin, L.

Qu, Y.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Ray, S. K.

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

Raybon, G.

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photonics Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

Raymond, S.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Resneau, P.

Ritchie, G. A. D.

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Roberts, J. S.

P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Roberts, T. S.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Rodermans, M.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Rossetti, M.

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
[Crossref]

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).

Roy, R.

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Saiz, T. A.

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

Sarma, J.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Seeds, A.

Shaw, H.

R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[Crossref]

Shibata, H.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Shibata, Y.

M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
[Crossref]

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Shin, S. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Smallwood, R.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

Smith, L. E.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

Song, J. D.

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

Stair, K. A.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Su, Y.-S.

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

Sugimoto, Y.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Sugo, M.

M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
[Crossref]

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Sun, Z.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Suvorova, A. A.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Tang, M.

Tohmori, Y.

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Toivonen, J.

Tsai, C.-H.

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

Tsai, C.-W.

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

Tsai, D. P.

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

Tsatsul’nikov, A. F.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Tsubaki, I.

I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
[Crossref]

Tsuda, M.

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

Ustinov, V. M.

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Velez, C.

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

Volovik, B. V.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Wada, O.

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

Wang, D.-N.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Wang, F.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

Wang, J.

J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
[Crossref]

Wang, L.

Wang, Z.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Wang, Z. C.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

Wang, Z. G.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

Watanabe, E.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Waxman, E. M.

Wei, H.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Weir, N.

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Werner, P.

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

White, S. E.

S. E. White and M. A. Cataluna, “Unlocking spectral versatility from broadly−tunable quantum−dot lasers,” Photonics 2(2), 719–744 (2015).
[Crossref]

Wright, M. W.

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

Wu, J.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Wu, S.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Wu, Y.

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

Xu, T.

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

Yaguchi, J.

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

Yakubovich, S. D.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

Yamamoto, M.

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Yan-Hua, W.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Yao, R.

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Yasaka, H.

Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
[Crossref]

Yasuda, T.

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

Ye, J.

Yoo, Y. C.

Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
[Crossref]

Yoshimura, R.

M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
[Crossref]

Zeng, Y.

Zhang, J.

Zhang, J. X.

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Zhang, X.

Zhang, Z. Y.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Zhan-Guo, W.

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Zhao, Y.

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Zhou, Y.

Zhukov, A. E.

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Analyst (Lond.) (1)

W. Denzer, M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, “Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode,” Analyst (Lond.) 134(11), 2220–2223 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Noguchi, H. Yasaka, and O. Mikami, “Tandem active layer superluminescent diode with a very wide spectrum,” Appl. Phys. Lett. 58(18), 1976–1978 (1991).
[Crossref]

Chin. Phys. B (1)

H. Fa-Jie, J. Peng, W. Yan-Hua, W. Fei-Fei, W. Heng, and W. Zhan-Guo, “Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device,” Chin. Phys. B 24(10), 104212 (2015).
[Crossref]

Electron. Lett. (6)

M. Sugo, R. Yoshimura, and Y. Shibata, “High-power (>80 mW) and high-efficiency (>30%) 1.3 μm super-luminescent diodes,” Electron. Lett. 42(21), 1245–1246 (2006).
[Crossref]

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[Crossref]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, and R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43(10), 587–589 (2007).
[Crossref]

Y. Morishima, J. Yaguchi, A. Mukai, T. Ohgoh, and H. Asano, “Longitudinal bandgap modulated broadband (>150 nm) InGaAs/GaAs MQWs superluminescent diodes by selective area MOVPE growth,” Electron. Lett. 45(10), 521–522 (2009).
[Crossref]

M. Sugo, Y. Shibata, H. Kamioka, Y. Tohmori, and M. Yamamoto, “High-power (>50 mW) and wideband (>50 nm) 1.3 μm super-luminescent diodes,” Electron. Lett. 41(8), 500–501 (2005).
[Crossref]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[Crossref]

J. Wang, M. J. Hamp, and D. T. Cassidy, “Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes,” IEEE J. Quantum Electron. 44(12), 1256–1262 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. C. Newell, M. W. Wright, H. Hou, and L. F. Lester, “Carrier distribution, spontaneous emission and gain engineering in lasers with nonidentical quantum wells,” IEEE J. Sel. Top. Quantum Electron. 5(3), 620–626 (1999).
[Crossref]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 785–791 (2009).
[Crossref]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajić, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1015–1022 (2010).
[Crossref]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[Crossref]

IEEE Photonics J. (2)

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

R. Yao, N. Weir, C.-S. Lee, and W. Guo, “Broadband chirped InAs Quantum-dot superluminescent light-emitting diodes with In x Al 1-x As strain-reducing layers,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (8)

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Improved continuous-wave performance of two-tection quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photonics Technol. Lett. 24(14), 1188–1190 (2012).
[Crossref]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, and C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photonics Technol. Lett. 17(3), 540–542 (2005).
[Crossref]

K.-Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3-μm transmitter source,” IEEE Photonics Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs Matrix,” IEEE Photonics Technol. Lett. 20(20), 1742–1744 (2008).
[Crossref]

G. Du, G. Devane, K. A. Stair, S. Wu, R. P. H. Chang, Y. Zhao, Z. Sun, Y. Liu, X. Jiang, and W. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photonics Technol. Lett. 10(1), 57–59 (1998).
[Crossref]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photonics Technol. Lett. 19(7), 501–503 (2007).
[Crossref]

C.-H. Tsai, Y.-S. Su, C.-W. Tsai, D. P. Tsai, and C.-F. Lin, “High-power angled broad-area 1.3-μm laser diodes with good beam quality,” IEEE Photonics Technol. Lett. 16(11), 2412–2414 (2004).
[Crossref]

IEEE Sens. J. (1)

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs Quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

IET Optoelectron. (1)

T. Xu, P. Bardella, M. Rossetti, and I. Montrosset, “Beam propagation method simulation and analysis of quantum dot flared semiconductor optical amplifiers in continuous wave high-saturation regime,” IET Optoelectron. 6(2), 110–116 (2012).
[Crossref]

J. Appl. Phys. (2)

N. Ozaki, D. T. D. Childs, J. Sarma, T. S. Roberts, T. Yasuda, H. Shibata, H. Ohsato, E. Watanabe, N. Ikeda, Y. Sugimoto, and R. A. Hogg, “Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source,” J. Appl. Phys. 119(8), 083107 (2016).
[Crossref]

S. K. Ray, K. M. Groom, R. Alexander, K. Kennedy, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Design, growth, fabrication, and characterization of InAs/GaAs 1.3 μm quantum dot broadband superluminescent light emitting diode,” J. Appl. Phys. 100(10), 103105 (2006).
[Crossref]

J. Korean Phys. Soc. (2)

Y. C. Yoo, I. K. Han, and J. H. Kim, “High-power InAs quantum-dot superluminescent diodes with offset J-shaped waveguides,” J. Korean Phys. Soc. 61(8), 1325–1327 (2012).
[Crossref]

M. H. Park, S. J. Park, J. D. Song, W. J. Choi, K. W. Kim, J. Y. Lim, Y. J. Lee, and J. H. Park, “Growth and spectral analysis of stacked quantum dots for broadband superluminescent diodes,” J. Korean Phys. Soc. 62(4), 595–600 (2013).
[Crossref]

J. Lightwave Technol. (1)

R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Semicond. (1)

F. Wang, P. Jin, J. Wu, Y. Wu, F. Hu, and Z. Wang, “Active multi-mode-interferometer broadband superluminescent diodes,” J. Semicond. 37(1), 014006 (2016).
[Crossref]

Nanoscale Res. Lett. (1)

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Opt. Express (6)

Y. Zhou, J. Zhang, Y. Ning, Y. Zeng, J. Zhang, X. Zhang, L. Qin, and L. Wang, “Bimodal-sized quantum dots for broad spectral bandwidth emitter,” Opt. Express 23(25), 32230–32237 (2015).
[Crossref] [PubMed]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

M. Blazek, W. Elsässer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback,” Opt. Express 17(16), 13365–13372 (2009).
[Crossref] [PubMed]

S. Haggett, M. Krakowski, I. Montrosset, and M. A. Cataluna, “High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures,” Opt. Express 22(19), 22854–22864 (2014).
[Crossref] [PubMed]

A. Aalto, G. Genty, T. Laurila, and J. Toivonen, “Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources,” Opt. Express 23(19), 25225–25234 (2015).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tunability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14–15), 1129–1134 (2008).
[Crossref]

Photonics (1)

S. E. White and M. A. Cataluna, “Unlocking spectral versatility from broadly−tunable quantum−dot lasers,” Photonics 2(2), 719–744 (2015).
[Crossref]

Phys. Status Solidi (2)

M. Tsuda, T. Inoue, T. Kita, and O. Wada, “Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers,” Phys. Status Solidi 8(2), 331–333 (2011).
[Crossref]

I. Tsubaki, Y. Harada, and T. Kita, “High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots,” Phys. Status Solidi 9(12), 2473–2476 (2012).
[Crossref]

Quantum Electron. (2)

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, and S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron. 37(4), 331–333 (2007).
[Crossref]

E. V. Andreeva, A. E. Zhukov, V. V. Prokhorov, V. M. Ustinov, and S. D. Yakubovich, “Superluminescent InAs/AlGaAs/GaAs quantum dot heterostructure diodes emitting in the 1100–1230-nm spectral range,” Quantum Electron. 36(6), 527–531 (2006).
[Crossref]

Sci. China Ser. E Technol. Sci. (1)

Y. Qu, H. Li, J. X. Zhang, B. Bo, X. Gao, and G. Liu, “High performance 1.3 μm InGaAsN superluminescent diodes,” Sci. China Ser. E Technol. Sci. 52(8), 2396–2399 (2009).

Sci. Rep. (1)

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

M. T. Crowley, N. Patel, T. A. Saiz, M. E. Emawy, T. A. Nilsen, N. A. Naderi, S. D. Mukherjee, B. O. Fimland, and L. F. Lester, “Modelling the spectral emission of multi-section quantum dot superluminescent light-emitting diodes,” Semicond. Sci. Technol. 27(6), 065011 (2012).
[Crossref]

P. A. Evans, P. Blood, and J. S. Roberts, “Carrier distribution in quantum well lasers,” Semicond. Sci. Technol. 9(9), 1740–1743 (1994).
[Crossref]

Semiconductors (1)

B. V. Volovik, A. F. Tsatsul’nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long-wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33(8), 901–905 (1999).
[Crossref]

Other (1)

M. Rossetti, P. Bardella, M. Gioannini, and I. Montrosset, “Carrier transport effects in multi layer quantum dot lasers and SLDs,” in ECIO’08 Eindhoven - Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers (European Conference on Integrated Photonics, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a). Superluminescent diode design schematic (not to scale). The SLD’s tilt angle (7°) is not represented, for simplicity. (b). Top-down photo of SLD. The isolation trench is indicated in the photo by the red arrows.
Fig. 2
Fig. 2 Superluminescent diode output optical power vs front section driving current at various fixed rear section currents.
Fig. 3
Fig. 3 Superluminescent diode optical spectrum (OS) FWHM spectral bandwidth vs output power at various front section driving currents.
Fig. 4
Fig. 4 Superluminescent diode optical spectra under various biasing conditions. (a) optical spectra at various front section driving currents at a fixed rear section current of 0.2 A. (b) optical spectra at various rear section currents at a fixed front section current of 4 A.

Tables (1)

Tables Icon

Table 1 Comparison of the spectral bandwidth (Δλ), average power (Pavg) and average power spectral density (Pavg/Δλ) of the device reported here to state of the art CW SLDs with a central wavelength (λc) between 1.1 – 1.3 μm selected from the literature [1,9,13,16,22–51].

Metrics