Abstract

In complex media, light waves are diffused both in space and time due to multiple light scattering, and its intensity is attenuated with the increase of propagation depth. In this paper, we propose an iterative wavefront shaping method for enhancing time-gated reflection intensity, which leads to efficient light energy delivery to a target object embedded in a highly scattering medium. We achieved an over 10 times enhancement of reflectance at the specific flight time and demonstrated the focusing of light energy to the target object. Since the proposed method does not require reflection matrix measurement, it will be highly suited to samples in mechanically dynamic conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback

Gerwin Osnabrugge, Lyubov V. Amitonova, and Ivo M. Vellekoop
Opt. Express 27(8) 11673-11688 (2019)

Exploring anti-reflection modes in disordered media

Moonseok Kim, Wonjun Choi, Changhyeong Yoon, Guang Hoon Kim, Seung-hyun Kim, Gi-Ra Yi, Q-Han Park, and Wonshik Choi
Opt. Express 23(10) 12740-12749 (2015)

Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media

Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand
J. Opt. Soc. Am. A 30(8) 1592-1602 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  3. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  4. M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
    [Crossref] [PubMed]
  5. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
    [Crossref] [PubMed]
  6. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
    [Crossref]
  7. R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
    [Crossref] [PubMed]
  8. C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
    [Crossref]
  9. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref] [PubMed]
  10. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
    [Crossref] [PubMed]
  11. C. Prada and M. Fink, “Eigenmodes of the Time-Reversal Operator - a Solution to Selective Focusing in Multiple-Target Media,” Wave Motion 20(2), 151–163 (1994).
    [Crossref]
  12. C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
    [Crossref]
  13. M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
    [Crossref] [PubMed]
  14. W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
    [Crossref] [PubMed]
  15. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
    [Crossref] [PubMed]
  16. S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
    [Crossref]
  17. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  18. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  19. Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19(8), 7587–7595 (2011).
    [Crossref] [PubMed]
  20. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref] [PubMed]
  21. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
    [Crossref] [PubMed]
  22. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  23. B. Blochet, L. Bourdieu, and S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization,” Opt. Lett. 42(23), 4994–4997 (2017).
    [Crossref] [PubMed]
  24. A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
    [Crossref] [PubMed]
  25. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref] [PubMed]
  26. W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
    [Crossref] [PubMed]
  27. A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
    [Crossref] [PubMed]
  28. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
    [Crossref] [PubMed]

2018 (1)

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

2017 (3)

B. Blochet, L. Bourdieu, and S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization,” Opt. Lett. 42(23), 4994–4997 (2017).
[Crossref] [PubMed]

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

2016 (2)

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

2015 (4)

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

2013 (4)

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
[Crossref] [PubMed]

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

2012 (2)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

2011 (5)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19(8), 7587–7595 (2011).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

2010 (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

2007 (2)

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

2006 (2)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
[Crossref] [PubMed]

1994 (1)

C. Prada and M. Fink, “Eigenmodes of the Time-Reversal Operator - a Solution to Selective Focusing in Multiple-Target Media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

1991 (1)

C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[Crossref]

Andreoli, D.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

Aubry, A.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

Blochet, B.

Boccara, A. C.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

Bourdieu, L.

Brake, J.

Bromberg, Y.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Cao, H.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Choi, H.

Choi, W.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref] [PubMed]

Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19(8), 7587–7595 (2011).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref] [PubMed]

Conkey, D. B.

Dasari, R. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19(8), 7587–7595 (2011).
[Crossref] [PubMed]

Defienne, H.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Fang-Yen, C.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

Feld, M. S.

Fink, M.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

C. Prada and M. Fink, “Eigenmodes of the Time-Reversal Operator - a Solution to Selective Focusing in Multiple-Target Media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[Crossref]

Fu, D.

Gigan, S.

B. Blochet, L. Bourdieu, and S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization,” Opt. Lett. 42(23), 4994–4997 (2017).
[Crossref] [PubMed]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

Goetschy, A.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

Grésillon, S.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

Ha, J.

Häusser, M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Hemphill, A. S.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Hillman, T. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Hong, J.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Hou, X.

Hsu, C. W.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

Huang, P. S.

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Jang, J.

Jang, M.

Jang, W.

Jeong, S.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

Kang, S.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Katz, O.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Kim, D.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

Kim, G. H.

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Kim, M.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Kim, S. H.

Lagendijk, A.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Lee, K. J.

Lee, S.

Lee, Y.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Lerosey, G.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

Liew, S. F.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

Lim, J.

Lim, Y.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Lin, A.

Liu, Y.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Lue, N.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Mosk, A. P.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Mounaix, M.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

Oh, W. Y.

Packer, A. M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Park, H.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Park, J.

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

Park, J. H.

Park, Q.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Park, Q. H.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

Park, Y.

Petrenko, S.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

Piestun, R.

Popoff, S. M.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

Prada, C.

C. Prada and M. Fink, “Eigenmodes of the Time-Reversal Operator - a Solution to Selective Focusing in Multiple-Target Media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[Crossref]

Roska, B.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Ruan, H.

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Sarma, R.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

Shen, Y.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Si, J.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

So, P. T. C.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Stone, A. D.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

Tan, W.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Volpe, G.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

Wang, D.

Wang, L. V.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Wu, B.

Wu, F.

C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[Crossref]

Yamauchi, T.

Yamilov, A. G.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

Yang, T. D.

Yaqoob, Z.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Z. Yaqoob, T. Yamauchi, W. Choi, D. Fu, R. R. Dasari, and M. S. Feld, “Single-shot full-field reflection phase microscopy,” Opt. Express 19(8), 7587–7595 (2011).
[Crossref] [PubMed]

Yi, G. R.

Yoon, C.

M. Kim, W. Choi, C. Yoon, G. H. Kim, S. H. Kim, G. R. Yi, Q. H. Park, and W. Choi, “Exploring anti-reflection modes in disordered media,” Opt. Express 23(10), 12740–12749 (2015).
[Crossref] [PubMed]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

Yu, H.

Zhan, P.

Zhang, S.

Zhou, E. H.

Zhou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

C. Prada, F. Wu, and M. Fink, “The Iterative Time-Reversal Mirror - a Solution to Self-Focusing in the Pulse Echo Mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[Crossref]

Nanomedicine (Lond.) (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond.) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Nat. Neurosci. (1)

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Nat. Photonics (5)

S. Jeong, Y. Lee, W. Choi, S. Kang, J. Hong, J. Park, Y. Lim, H. Park, and W. Choi, “Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering,” Nat. Photonics 12(5), 277–283 (2018).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 581–585 (2012).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13(5), 497–502 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (5)

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[Crossref] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[Crossref] [PubMed]

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q. H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5(1), 11393 (2015).
[Crossref] [PubMed]

Wave Motion (1)

C. Prada and M. Fink, “Eigenmodes of the Time-Reversal Operator - a Solution to Selective Focusing in Multiple-Target Media,” Wave Motion 20(2), 151–163 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Iterative optimization of time-gated reflection signal. (a) Experimental schematic diagram. Ti:Sapphire laser (central wavelength: 780 nm, pulse width ~60 fs), BS1-4, Beamsplitters; SLM, Spatial light modulator; OLR, Objective lens for reflection; OLT, Objective lens for transmission; SM, Scanning mirror; DG, Diffraction grating;, Camera 1 for reflection measurement and Camera 2 for transmission measurement. SLM and camera plane are at the conjugated plane of sample plane, and 4-f lens relay was omitted in this scheme. (b) Representative phase in SLM. Part I (blue pixels) and II (red pixels) are randomly chosen at each iteration step. Color bar, phase in radians. (c) Experimental measurement of time-gated reflection intensity as a function of Δϕ at the iteration steps of 5, 15, 45, 65, 100.
Fig. 2
Fig. 2 Experimental result of time-gated reflection feedback. (a) Temporal reflection as feedback process. As the iteration number increases, the reflection of only the target time is increased. (b) The reflection enhancement η re of each iteration step. (c) The transmission enhancement of target region η of each iteration step. Blue straight lines in (b) and (c) are the enhancement of top eigenchannel from the measurement of time-gated reflection matrix. (d) Amplitude maps of time-gated reflection for initial random pattern (left) and optimized pattern (right). Scale bar, 10 µm. (e) Logarithmic map of transmission image for initial random pattern (left) and optimized pattern (right). Scale bar 40 µm. The inset shows the magnified map of the center region. Yellow dashed-circle indicates the region of the target. Each map in (d) and (e) is normalized by the maximum value of the optimized image.
Fig. 3
Fig. 3 Comparison between time-gated eigenchannels and feedback results. (a) Contrast of modulation with Δϕ at each iteration step. (b) The contribution of each eigenchannel to the incident wave before (blue) and after (red) the feedback process. Inset shows the contribution of top 10 channels. (c) The averaged contribution of the incident wave of the first 10 eigenchannels (red) and last 10 eigenchannels (blue) with respect to the number of iterations.
Fig. 4
Fig. 4 Light energy optimization to the target drifted in time. (a) Schematic of the sample preparation. Sample stage was shifted at a step of 1 µm laterally using a micromanipulator (not shown). The reflection enhancement η re (b) and the target transmission enhancement η (c) of each iteration step during the sample drift. The arrows indicate the times when the target was moved.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E R (t)=R(t) E in ,
R(t)=UΣ V .
E in = m=1 N c m v m ,
E R (t)= i=1 N c i σ i u i .
E in = E in,I + E in,II = m=1 N [ c m I v m + c m II v m ] .
E in (Δϕ)= E in,I + e iΔϕ E in,II = m=1 N [ c m I v m + c m II e iΔϕ v m ] .
E R (t,Δϕ)= E R,I (t)+ E R,II (t) e iΔϕ = m=1 N [ c m I σ m u m + c m II σ m u m e iΔϕ ] ,
I R (t,Δϕ)= | E R (t,Δϕ) | 2 = m=1 N τ m | c m I + c m II e iΔϕ | 2 ,
I R (t,Δϕ)=A+Bcos( Δϕ+ ϕ 0 ),

Metrics