Abstract

In this paper, a non-contact binocular vision profilometry method is proposed to measure a rough lens with aperture of around 300mm. A series of binarized band-limited pseudo-random patterns (BBPPs) are projected onto the rough lens, we utilize the temporal encoding method so that each pixel in the captured images has its specific code word. Homologous points could be matched via stereo matching procedure, then the surface of the rough lens will be reconstructed based on triangulation method according to the previous calibration data. Compared with the three coordinate measuring machine (CMM), this method achieves a fast and cheap measurement of the large-sized rough lens, which might be highly interesting for fast and overall measurement of metre-sized rough elements in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible dynamic measurement method of three-dimensional surface profilometry based on multiple vision sensors

Zhen Liu, Xiaojing Li, Fengjiao Li, and Guangjun Zhang
Opt. Express 23(1) 384-400 (2015)

Precise calibration of binocular vision system used for vision measurement

Yi Cui, Fuqiang Zhou, Yexin Wang, Liu Liu, and He Gao
Opt. Express 22(8) 9134-9149 (2014)

Optimized stereo matching in binocular three-dimensional measurement system using structured light

Kun Liu, Changhe Zhou, Shengbin Wei, Shaoqing Wang, Xin Fan, and Jianyong Ma
Appl. Opt. 53(26) 6083-6090 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
    [Crossref]
  2. I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
    [Crossref]
  3. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]
  4. S. V. D. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18–31 (2016).
    [Crossref]
  5. J. Zhang, C. Zhou, and X. Wang, “Three-dimensional profilometry using a Dammann grating,” Appl. Opt. 48(19), 3709–3715 (2009).
    [Crossref] [PubMed]
  6. S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
    [Crossref]
  7. H. Li, C. Zhou, S. Wang, Y. Lu, and X. Xiang, “Two-dimensional gold matrix method for encoding two-dimensional optical arbitrary positions,” Opt. Express 26(10), 12742–12754 (2018).
    [Crossref] [PubMed]
  8. A. Wiegmann, H. Wagner, and R. Kowarschik, “Human face measurement by projecting bandlimited random patterns,” Opt. Express 14(17), 7692–7698 (2006).
    [Crossref] [PubMed]
  9. M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49(18), 3622–3629 (2010).
    [Crossref] [PubMed]
  10. K. Liu, C. Zhou, S. Wei, S. Wang, X. Fan, and J. Ma, “Optimized stereo matching in binocular three-dimensional measurement system using structured light,” Appl. Opt. 53(26), 6083–6090 (2014).
    [Crossref] [PubMed]
  11. X. Fan, C. Zhou, S. Wang, C. Li, and B. Yang, “3D human face reconstruction based on band-limited binary patterns,” Chin. Opt. Lett. 14(8), 081101 (2016).
    [Crossref]
  12. B. Li, Y. An, and S. Zhang, “Single-shot absolute 3D shape measurement with Fourier transform profilometry,” Appl. Opt. 55(19), 5219–5225 (2016).
    [Crossref] [PubMed]
  13. Y. Tanaka, Y. Mori, and T. Nomura, “Single-shot three-dimensional shape measurement by low-coherent optical path difference digital holography,” Appl. Opt. 53(27), G19–G24 (2014).
    [Crossref] [PubMed]
  14. D. Zheng, F. Da, Q. Kemao, and H. S. Seah, “Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter,” Opt. Express 25(5), 4700–4713 (2017).
    [Crossref] [PubMed]
  15. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  16. J. Y. Bouguet, “Camera calibration toolbox for matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc .

2018 (1)

2017 (1)

2016 (5)

X. Fan, C. Zhou, S. Wang, C. Li, and B. Yang, “3D human face reconstruction based on band-limited binary patterns,” Chin. Opt. Lett. 14(8), 081101 (2016).
[Crossref]

B. Li, Y. An, and S. Zhang, “Single-shot absolute 3D shape measurement with Fourier transform profilometry,” Appl. Opt. 55(19), 5219–5225 (2016).
[Crossref] [PubMed]

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

S. V. D. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18–31 (2016).
[Crossref]

S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
[Crossref]

2014 (2)

2010 (1)

2009 (1)

2006 (1)

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1983 (1)

An, Y.

Atherton, L. J.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Baisden, P. A.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Da, F.

Dirckx, J. J. J.

S. V. D. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18–31 (2016).
[Crossref]

Doi, K.

I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
[Crossref]

Fan, X.

Grosse, M.

Hawley, R. A.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Ishii, I.

I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
[Crossref]

Jeught, S. V. D.

S. V. D. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18–31 (2016).
[Crossref]

Kemao, Q.

Kowarschik, R.

Land, T. A.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Li, B.

Li, C.

Li, H.

Liu, K.

S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
[Crossref]

K. Liu, C. Zhou, S. Wei, S. Wang, X. Fan, and J. Ma, “Optimized stereo matching in binocular three-dimensional measurement system using structured light,” Appl. Opt. 53(26), 6083–6090 (2014).
[Crossref] [PubMed]

Lu, Y.

Ma, J.

S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
[Crossref]

K. Liu, C. Zhou, S. Wei, S. Wang, X. Fan, and J. Ma, “Optimized stereo matching in binocular three-dimensional measurement system using structured light,” Appl. Opt. 53(26), 6083–6090 (2014).
[Crossref] [PubMed]

Menapace, J. A.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Miller, P. E.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Mori, Y.

Mutoh, K.

Nomura, T.

Runkel, M. J.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Schaffer, M.

Seah, H. S.

Spaeth, M. L.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Stolz, C. J.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Suratwala, T. I.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Takeda, M.

Tanaka, Y.

Tsuji, K.

I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
[Crossref]

Wagner, H.

Wang, S.

Wang, X.

Wegner, P. J.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Wei, S.

S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
[Crossref]

K. Liu, C. Zhou, S. Wei, S. Wang, X. Fan, and J. Ma, “Optimized stereo matching in binocular three-dimensional measurement system using structured light,” Appl. Opt. 53(26), 6083–6090 (2014).
[Crossref] [PubMed]

Wiegmann, A.

Wong, L. L.

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Xiang, X.

Yamamoto, K.

I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
[Crossref]

Yang, B.

Zhang, J.

Zhang, S.

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zheng, D.

Zhou, C.

Appl. Opt. (6)

Chin. Opt. Lett. (1)

Fus. Sci. Technol. (1)

P. A. Baisden, L. J. Atherton, R. A. Hawley, T. A. Land, J. A. Menapace, P. E. Miller, M. J. Runkel, M. L. Spaeth, C. J. Stolz, T. I. Suratwala, P. J. Wegner, and L. L. Wong, “Large optics for the national ignition facility,” Fus. Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

IEEE Trans. Industr. Inform. (1)

S. Wei, C. Zhou, S. Wang, K. Liu, X. Fan, and J. Ma, “Colorful 3-D imaging using an infrared Dammann grating,” IEEE Trans. Industr. Inform. 12(4), 1641–1648 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

S. V. D. Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18–31 (2016).
[Crossref]

Other (2)

I. Ishii, K. Yamamoto, K. Doi, and K. Tsuji, “High-speed 3D image acquisition using coded structured light projection,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2007), pp. 925–930.
[Crossref]

J. Y. Bouguet, “Camera calibration toolbox for matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of stereo profilometry system.
Fig. 2
Fig. 2 Flow chart of binocular vision profilometry.
Fig. 3
Fig. 3 Generation of binarized band-limited (0.05-0.1) pseudo-random pattern. (a) Original binary pattern; (b) Low-pass filtered pattern; (c) Binarized band-limited pseudo-random pattern.
Fig. 4
Fig. 4 Removal of multiple reflection. (a) Placement of linear polarizers. (b) Image captured before polarizers are placed. (c) Image captured after polarizers are placed.
Fig. 5
Fig. 5 schematic diagram of captured pattern sequences.
Fig. 6
Fig. 6 Reprojection errors (in pixel) of left and right camera.
Fig. 7
Fig. 7 A pair of captured images and binarization of them. (a) Left image; (b) Right image; (c) ROI of left image; (d) ROI of right image; (e) Binarization of left image; (f) Binarization of right image.
Fig. 8
Fig. 8 Disparity map of the rough lens.
Fig. 9
Fig. 9 3-D points cloud of the rough lens
Fig. 10
Fig. 10 Schematic diagram of data acquisition.
Fig. 11
Fig. 11 Fitting radiuses R at different positions.
Fig. 12
Fig. 12 Effect of local noise on radius fitting accuracy.

Tables (1)

Tables Icon

Table 1 Fitting Radiuses and Deviations at Different Positions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C L =[ I L ( x,y,1 ), I L ( x,y,2 ),..., I L ( x,y,t ),..., I L ( x,y,N ) ],
C R =[ I R ( x+d,y,1 ), I R ( x+d,y,2 ),..., I R ( x+d,y,t ),..., I R ( x+d,y,N ) ],
ZNCC(x,y,d)= t=1 N [ I L (x,y,t) M L ][ I R (x+d,y,t) M R ] D L (x,y,t) D R (x+d,y,t) .
M= 1 N t=1 N I(x,y,t) ,
D= 1 N t=1 N ( I( x,y,t )M ) 2 .

Metrics