Abstract

We design graded-index (GI) circular-core waveguides to realize low-loss light coupling via 45-degree mirrors using a ray-trace simulator. The waveguide’s structural parameters, which determine the insertion loss of the waveguides with 45-degree mirrors, are the cladding thickness, the core size, the refractive index of materials, and the mirror angle. The optimum waveguide structural parameters are determined, and the GI circular-core waveguide with the appropriate structural parameters which is actually fabricated exhibits much lower total link loss than step-index (SI) core waveguides. The tight optical confinement of the GI-core contributes to the reduction of loss increment due to the mirror structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors

Yoshie Morimoto and Takaaki Ishigure
Opt. Express 24(4) 3550-3561 (2016)

Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

References

  • View by:
  • |
  • |
  • |

  1. http://www/top500.org/
  2. A. Benner, “Optical interconnect opportunities in super computers and high end computing,” in Optical Fiber Communication Conference and Exposition 2012, Paper Otu2B4 (2012).
  3. H. Nasu, K. Nagashima, T. Uemura, A. Izawa, and Y. Ishikawa, “>1-Tb/s on-board optical engine for high-density optical interconnects,” in Proceedings of Optical Fiber Communication Conference 2017, Paper W1A.4 (2017).
  4. M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
    [Crossref]
  5. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [Crossref]
  6. N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
    [Crossref]
  7. R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
    [Crossref]
  8. K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  9. D. Suganuma and T. Ishigure, “Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method,” Opt. Express 23(2), 1585–1593 (2015).
    [Crossref] [PubMed]
  10. Y. Koike, Y. Takezawa, and Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27(3), 486–491 (1988).
  11. R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
    [Crossref]
  12. M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
    [Crossref]
  13. Y. Morimoto and T. Ishigure, “Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors,” Opt. Express 24(4), 3550–3561 (2016).
    [Crossref] [PubMed]
  14. T. Kudo and T. Ishigure, “Analysis of interchannel crosstalk in multimode parallel optical waveguides using the beam propagation method,” Opt. Express 22(8), 9675–9686 (2014).
    [Crossref] [PubMed]
  15. H. Numata, S. Nakagawa, and Y. Taira, “High-density optical interconnect based on TIR and metal coated precise mirror attached waveguide,” in Proceedings of Conference on Lasers and Elctro-Optics 2009, Paper JWA40 (2009).
    [Crossref]

2016 (1)

2015 (1)

2014 (1)

2013 (2)

R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
[Crossref]

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (1)

2009 (1)

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

2008 (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

2005 (1)

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

1999 (1)

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

1988 (1)

Baghsiahi, H.

Bamiedakis, N.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Choki, K.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dangel, R.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Degroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Enbutsu, K.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Gmür, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Graham-Jones, J.

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Hikita, M.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Imamura, S.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Immonen, M.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Ishigure, T.

Karppinen, M.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Kinoshita, R.

Kivilahti, J. K.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Koike, Y.

Kudo, T.

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Milward, D.

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Morimoto, Y.

Moriya, K.

Offrein, B. J.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Ohtsuka, Y.

Ooba, N.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Papakonstantinou, I.

Penty, R. V.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Pitwon, R. C. A.

Selviah, D. R.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Suganuma, D.

Takezawa, Y.

Tomaru, S.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Usai, M.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Wang, K.

White, L. H.

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Yoshida, R.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Yoshida, T.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

IEEE Trans. Adv. Packag. (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

IEEE Trans. Electron. Packag. Manuf. (1)

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (4)

H. Numata, S. Nakagawa, and Y. Taira, “High-density optical interconnect based on TIR and metal coated precise mirror attached waveguide,” in Proceedings of Conference on Lasers and Elctro-Optics 2009, Paper JWA40 (2009).
[Crossref]

http://www/top500.org/

A. Benner, “Optical interconnect opportunities in super computers and high end computing,” in Optical Fiber Communication Conference and Exposition 2012, Paper Otu2B4 (2012).

H. Nasu, K. Nagashima, T. Uemura, A. Izawa, and Y. Ishikawa, “>1-Tb/s on-board optical engine for high-density optical interconnects,” in Proceedings of Optical Fiber Communication Conference 2017, Paper W1A.4 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Link power budget in on-board and board-to-board optical link.
Fig. 2
Fig. 2 (a)Cross-section and (b)side-view of the fabricated waveguide.
Fig. 3
Fig. 3 Measurement setup for the waveguide (a)without (b)with the 45-degree mirror.
Fig. 4
Fig. 4 Simulation model for ray-trace simulator.
Fig. 5
Fig. 5 Waveguide structural parameters.
Fig. 6
Fig. 6 Accumulated optical loss at each point.
Fig. 7
Fig. 7 Loss at the mirrors of GI circular-core, SI circular-core, and SI square-core waveguides.
Fig. 8
Fig. 8 Calculated optical loss with respect to the cladding thickness.
Fig. 9
Fig. 9 Calculated optical loss with respect to the core size when (a)50-μmø PD (b)35-μmø PD is used.
Fig. 10
Fig. 10 Calculated optical loss with respect to the core refractive index of (a)GI circular-core waveguide (b)SI square-core waveguide.
Fig. 11
Fig. 11 Loss reduction due to the metal coating on the mirror surface in the case of GI circular-core waveguide.
Fig. 12
Fig. 12 Simulation models for the mirror angle tolerance curves.
Fig. 13
Fig. 13 Optical loss at (a) Tx side (b) Rx side with respect to the mirror angle when ncore is 1.525.
Fig. 14
Fig. 14 Optical loss at (a) Tx side (b) Rx side with respect to the mirror angle when ncore is 1.650.
Fig. 15
Fig. 15 Calculated optimum mirror angle with respect to the refractive index of core material.
Fig. 16
Fig. 16 (a)Cross-section and (b)side-view of the fabricated waveguide.
Fig. 17
Fig. 17 Comparison between the fabricated waveguides without and with optimum design.

Tables (3)

Tables Icon

Table 1 Insertion Loss of the Waveguide

Tables Icon

Table 2 Optimum design for realizing low-loss light coupling via 45-degree mirror

Tables Icon

Table 3 Insertion Loss of the Waveguide

Metrics