Abstract

We experimentally demonstrate a femtosecond laser enabled selective micro-holes drilling technique on the multicore-fiber facet. The precise position of individual cores at the seven-core fiber facet is initially locked by the image processing algorithm, and then six micro-holes are successfully fabricated after the pulse energy of femtosecond laser is optimized. Meanwhile, the use of fabricated seven-core fiber for the application of reflective intensity-modulated fiber optics displacement sensor (RIM-FODS) is comprehensively investigated. By using the beam propagation method (BPM), we theoretically investigate the effect of micro-hole depth on the RIM-FODS performance, in terms of both dead zone and measurement range. We identify that, with the increase of micro-hole depth, the dead zone range can be substantially reduced at the expense of measurement range reduction. However, multiple micro-holes with a successive depth difference can overcome such problem. When the micro-holes with depths of 5, 10, 15, 20, 25, 30 μm are fabricated on the seven-core fiber facet, and the dead zone range can be substantially reduced from 150 μm to 20 μm, together with an extension of measurement range from 250 μm to 400 μm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid

Ming Deng, Xiaokang Sun, Meng Han, and Decai Li
Appl. Opt. 52(4) 734-741 (2013)

Optimization of multicore fiber for high-temperature sensing

Amy Van Newkirk, Enrique Antonio-Lopez, Guillermo Salceda-Delgado, Rodrigo Amezcua-Correa, and Axel Schülzgen
Opt. Lett. 39(16) 4812-4815 (2014)

Four-core optical fiber as a calorimetric gauge

Sema Güvenç, Belkıs Gökbulut, Gülşen Kösoğlu, Heba Yüksel, and Mehmet Naci Inci
Appl. Opt. 55(32) 9173-9177 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. E. Ertorer, M. Haque, J. Li, and P. R. Herman, “Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating,” Opt. Express 26(7), 9323–9331 (2018).
    [Crossref] [PubMed]
  3. C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
    [Crossref]
  4. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
    [Crossref] [PubMed]
  5. P. Chen and X. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref] [PubMed]
  6. P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
    [Crossref] [PubMed]
  7. J. Liu and D. N. Wang, “In-fiber beam splitters for construction of in-line Michelson interferometers,” Opt. Lett. 43(17), 4304–4307 (2018).
    [Crossref] [PubMed]
  8. J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
    [Crossref]
  9. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  10. L. Yuan, T. Wei, Q. Han, H. Wang, J. Huang, L. Jiang, and H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Lett. 37(21), 4489–4491 (2012).
    [Crossref] [PubMed]
  11. Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractice-index sensor based on laser machined Fabry-Perot interferometer Tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [Crossref]
  12. X. Lan, Y. Han, T. Wei, Y. Zhang, L. Jiang, H. L. Tsai, and H. Xiao, “Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser,” Opt. Lett. 34(15), 2285–2287 (2009).
    [Crossref] [PubMed]
  13. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  14. H. Huang and U. Tata, “Simulation, implementation, and analysis of an optical fiber bundle distance sensor with single mode illumination,” Appl. Opt. 47(9), 1302–1309 (2008).
    [Crossref] [PubMed]
  15. Y. Chen, S. C. Yan, X. Zheng, F. Xu, and Y. Q. Lu, “A miniature reflective micro-force sensor based on a microfiber coupler,” Opt. Express 22(3), 2443–2450 (2014).
    [Crossref] [PubMed]
  16. Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).
  17. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
    [Crossref]
  18. N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
    [Crossref] [PubMed]
  19. R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979).
    [Crossref] [PubMed]
  20. G. He and F. W. Cuomo, “Displacement Response, Detection limit, and Dynamic Range of Fiber-optic lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
    [Crossref]
  21. B. Guzowski and M. Lakomski, “Realization of fiber optic displacement sensors,” Opt. Fiber Technol. 41, 34–39 (2018).
    [Crossref]
  22. A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
    [Crossref] [PubMed]
  23. T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
    [Crossref]
  24. Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
    [Crossref]

2018 (6)

2017 (2)

P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
[Crossref] [PubMed]

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

2016 (2)

2014 (1)

2012 (1)

2011 (1)

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

2009 (3)

2008 (2)

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

1996 (1)

1991 (1)

G. He and F. W. Cuomo, “Displacement Response, Detection limit, and Dynamic Range of Fiber-optic lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

1979 (1)

Ams, M.

Antipov, S.

Chen, N.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Chen, P.

Chen, Y.

Chen, Z.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Cheng, L.

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Choi, H. Y.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Cook, R. O.

Cuomo, F. W.

G. He and F. W. Cuomo, “Displacement Response, Detection limit, and Dynamic Range of Fiber-optic lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

Ding, Y.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Ertorer, E.

Fu, S.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Giessen, H.

Gissibl, T.

Guzowski, B.

B. Guzowski and M. Lakomski, “Realization of fiber optic displacement sensors,” Opt. Fiber Technol. 41, 34–39 (2018).
[Crossref]

Hamm, C. W.

Han, Q.

Han, Y.

Haque, M.

He, G.

G. He and F. W. Cuomo, “Displacement Response, Detection limit, and Dynamic Range of Fiber-optic lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

Herman, P. R.

Huang, H.

Huang, J.

Jiang, L.

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Kim, J.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Kim, J. K.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Lakomski, M.

B. Guzowski and M. Lakomski, “Realization of fiber optic displacement sensors,” Opt. Fiber Technol. 41, 34–39 (2018).
[Crossref]

Lan, T.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Lan, X.

Lee, B.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Li, J.

Liao, C. R.

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

Liu, D.

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Liu, J.

Liu, N.

Liu, Z.

Lu, Y. Q.

Magi, E.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Oh, K.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Ran, Z.

Rao, Y.

Schmid, M.

Shi, L.

Shimamoto, A.

Shin, W.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Shu, X.

Sohn, I.

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Sugden, K.

Sun, Q.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Tanaka, K.

Tang, M.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Tata, U.

Tong, W.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Tsai, H. L.

Wang, D. N.

J. Liu and D. N. Wang, “In-fiber beam splitters for construction of in-line Michelson interferometers,” Opt. Lett. 43(17), 4304–4307 (2018).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

Wang, H.

Wang, T.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Wang, Y.

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

Wei, T.

Williams, R. J.

Withford, M. J.

Xiao, H.

Xu, B.

Xu, F.

Xu, X.

Yan, S. C.

Yang, M.

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

Yuan, L.

Yuan, S.

Zhang, C.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Zhang, J.

Zhang, X.

Zhang, Y.

Zheng, X.

Zhu, B.

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Zhu, S.

Appl. Opt. (3)

IEEE Photonics J. (2)

C. Zhang, L. Cheng, S. Fu, M. Tang, and D. Liu, “Long period fiber grating fabrication by two-step infrared femtosecond laser exposure,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

T. Lan, C. Zhang, S. Fu, B. Zhu, M. Tang, and W. Tong, “Spatial division multiplexing-based reflective intensity-modulated fiber optics displacement sensor,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

J. K. Kim, J. Kim, K. Oh, I. Sohn, W. Shin, H. Y. Choi, and B. Lee, “W, Shin, H. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

J. Lightwave Technol. (2)

G. He and F. W. Cuomo, “Displacement Response, Detection limit, and Dynamic Range of Fiber-optic lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractice-index sensor based on laser machined Fabry-Perot interferometer Tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (2)

B. Guzowski and M. Lakomski, “Realization of fiber optic displacement sensors,” Opt. Fiber Technol. 41, 34–39 (2018).
[Crossref]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (4)

Optica (1)

Sens. Actuators B Chem. (1)

Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric micro-hole structured long period fiber gratings,” Sens. Actuators B Chem. 160(1), 822–825 (2011).
[Crossref]

Other (1)

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” IET International Communication Conference on Wireless Mobile and Computing (IET), pp. 441–443, (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Optical microscopic image of seven-core fiber, (b) schematic design of the RIM-FODS sensor head.
Fig. 2
Fig. 2 (a) Model of seven-core fiber based RIM-FODS with one micro-hole at the transmitted core. (b) Received power with respect to the micro-hole depth of the transmitted core.
Fig. 3
Fig. 3 (a) Model of seven-core fiber based RIM-FODS with six micro-holes at the received cores. (b) Received power with respect to the micro-holes depth of the received fiber cores.
Fig. 4
Fig. 4 (a) Model of seven-core fiber based RIM-FODS with a successive depth difference of micro-holes at the received cores. (b) Received power comparison between seven-core fiber and seven-core fiber with a successive depth of 5 μm based RIM-FODS.
Fig. 5
Fig. 5 Femtosecond laser fabrication system for micro-holes drilling on the multicore fiber facet.
Fig. 6
Fig. 6 (a) Image of seven-core fiber facet with two calibration points captured by CCD. Calculated absolute position of (b) individual cores, and (c) calibration points after the image processing.
Fig. 7
Fig. 7 Microscope of (a) top view and (b) side view after individual micro-hole fabrication.
Fig. 8
Fig. 8 Relationship between the micro-holes depth and the pulse energy of femtosecond laser.
Fig. 9
Fig. 9 Experimental setup of seven-core fiber based RIMFODS.
Fig. 10
Fig. 10 Performance comparison between RIM-FODS (a) without micro-holes and (b) with micro-holes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M ( d ' ) = { 0 w ( d ' ) S R r 4 σ π w 2 ( d ' ) S R r w ( d ' ) e 2 r 2 / w 2 ( d ' ) cos 1 ( S + r 2 R r 2 2 S r ) r d r S R r w ( d ' ) S + R r 4 σ π w 2 ( d ' ) S R r S + R r e 2 r 2 / w 2 ( d ' ) cos 1 ( S 2 + r 2 R r 2 2 S r ) r d r w ( d ' ) S + R r
w ( d ' ) = R t + ( 2 d + h ) tan ( a c r sin N A )

Metrics