Abstract

Based on the Riemann sum method, we propose the idea of studying the pulse response width in a moving scene by using the non-line-of-sight (NLOS) wireless ultraviolet (UV) single-scatter communication model. We simulated the effect of the transmitter moving in eight directions from the origin on the pulse response width, when the receiver is fixed at point (100, 0, 0). Furthermore, the pulse response characteristics of the receiver were analyzed with varying elevation angle, beam angle, field-of-view (FOV) angle, and other geometric parameters. The results show that the pulse response width is widened under the condition of movement. In addition, the influence of the elevation angle of the transmitter on the pulse width is larger than that of the receiver. However, the effect of the FOV and beam angles on the pulse response width is not obvious when the FOV angle is large.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels

Gang Chen, Zhengyuan Xu, and Brian M. Sadler
Opt. Express 18(10) 10500-10509 (2010)

Study of effects of obstacle on non-line-of-sight ultraviolet communication links

Hailiang Zhang, Hongwei Yin, Honghui Jia, Juncai Yang, and Shengli Chang
Opt. Express 19(22) 21216-21226 (2011)

Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication

Heng Qin, Yong Zuo, Dong Zhang, Yinghui Li, and Jian Wu
Opt. Express 25(5) 5018-5030 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
    [Crossref] [PubMed]
  2. R. Z. Yuan and J. S. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
    [Crossref]
  3. Z. Y. Xu, “Opportunities and challenges of wireless optical communication,” in National Microwave Millimeter Wave Conference (2015), pp. 1744–1747.
  4. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69(3), 464–470 (1979).
    [Crossref]
  5. M. R. Luettgen, D. M. Reilly, and J. H. Shapiro, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
    [Crossref]
  6. H. Xiao, Y. Zuo, J. Wu, Y. Li, and J. Lin, “Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium,” Opt. Lett. 38(17), 3366–3369 (2013).
    [Crossref] [PubMed]
  7. P. Song, X. Zhou, F. Song, C. Su, and A. Wang, “Performance analysis of UV multiple-scatter communication system with height difference,” Appl. Opt. 56(32), 8908–8916 (2017).
    [Crossref] [PubMed]
  8. G. Chen, Z. Xu, H. Ding, and B. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [Crossref] [PubMed]
  9. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
    [Crossref] [PubMed]
  10. Z. Y. Xu, “Approximate performance analysis of wireless ultraviolet links[C],” in IEEE International Conference on Acoustis, Speech and Signal Processing, 2007, pp. 577–580.
    [Crossref]
  11. T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).
  12. Y. Zuo, H. Xiao, J. Wu, W. Li, and J. Lin, “Closed-form path loss model of non-line-of-sight ultraviolet single-scatter propagation,” Opt. Lett. 38(12), 2116–2118 (2013).
    [Crossref] [PubMed]
  13. X. Jiang, P. Luo, and M. Zhang, “Performance analysis of none-line-of-sight ultraviolet communications with multi-user interference,” in International Conference on Communications in China, 8(1), pp. 199–203 (2013).
    [Crossref]
  14. K. Y. Dong, Y. Lou, Y. Ding, S. Wang, H. L. Wang, and H. L. Jiang, “Research on UV scattering communication,” in International Symposium on Photoelectronic Detection and Imaging, 2013, 8906:890612.
  15. P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
    [Crossref]
  16. M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: modeling, capacity and coding,” IEEE/OSA. J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
    [Crossref]
  17. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [Crossref] [PubMed]
  18. H. P. Ding, G. Chen, A. K. Majumdar, and Z. Y. Xu, “A parametric single scattering channel model for non-line-of-sight ultraviolet communications,” in Proceedings of SPIE-The International Society for Optical Engineering, 2008, 7091:70910M1–70910M6.
    [Crossref]
  19. Y. X. Luo, “Characteristics of ultraviolet communication channel and building of voice communication platform,” Chinese Academy of Sciences, 2014.
  20. J. Yang and B. Lu, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Antennas and Propagation,” 2014, pp. 753–756.
  21. R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).
  22. areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
    [Crossref]
  23. P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).
  24. Y. Zuo, H. Xiao, J. Wu, Y. Li, and J. Lin, “A single-scatter path loss model for non-line-of-sight ultraviolet channels,” Opt. Express 20(9), 10359–10369 (2012).
    [Crossref] [PubMed]
  25. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28(3), 420–428 (2011).
    [Crossref] [PubMed]

2017 (2)

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

P. Song, X. Zhou, F. Song, C. Su, and A. Wang, “Performance analysis of UV multiple-scatter communication system with height difference,” Appl. Opt. 56(32), 8908–8916 (2017).
[Crossref] [PubMed]

2016 (2)

R. Z. Yuan and J. S. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

2015 (3)

T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).

R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (2)

Y. Zuo, H. Xiao, J. Wu, Y. Li, and J. Lin, “A single-scatter path loss model for non-line-of-sight ultraviolet channels,” Opt. Express 20(9), 10359–10369 (2012).
[Crossref] [PubMed]

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: modeling, capacity and coding,” IEEE/OSA. J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

1991 (1)

1979 (1)

Chen, G.

Ding, H.

Drost, R. J.

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

Elshimy, M. A.

El-Shimy, M. A.

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: modeling, capacity and coding,” IEEE/OSA. J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
[Crossref]

Han, D.

He, Q.

Hranilovic, S.

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: modeling, capacity and coding,” IEEE/OSA. J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
[Crossref]

M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28(3), 420–428 (2011).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, P. Luo, and M. Zhang, “Performance analysis of none-line-of-sight ultraviolet communications with multi-user interference,” in International Conference on Communications in China, 8(1), pp. 199–203 (2013).
[Crossref]

Jin, D.

T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).

Ke, X. Z.

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

Lang, T.

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

Li, W.

Li, Y.

Li, Y. H.

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

Li, Z.

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

Liao, L.

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

Lin, J.

Liu, Y.

R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).

Luettgen, M. R.

Luo, P.

X. Jiang, P. Luo, and M. Zhang, “Performance analysis of none-line-of-sight ultraviolet communications with multi-user interference,” in International Conference on Communications in China, 8(1), pp. 199–203 (2013).
[Crossref]

Ma, J. S.

R. Z. Yuan and J. S. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

Qiang, R. X.

R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).

Reilly, D. M.

Sadler, B.

Sadler, B. M.

Shapiro, J. H.

Song, F.

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

P. Song, X. Zhou, F. Song, C. Su, and A. Wang, “Performance analysis of UV multiple-scatter communication system with height difference,” Appl. Opt. 56(32), 8908–8916 (2017).
[Crossref] [PubMed]

Song, P.

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

P. Song, X. Zhou, F. Song, C. Su, and A. Wang, “Performance analysis of UV multiple-scatter communication system with height difference,” Appl. Opt. 56(32), 8908–8916 (2017).
[Crossref] [PubMed]

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).

Su, C.

Wang, A.

Warde, C.

Wu, J.

Wu, M.

Xiao, H.

Xiong, Y. Y.

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

Xu, Z.

Xu, Z. Y.

Z. Y. Xu, “Opportunities and challenges of wireless optical communication,” in National Microwave Millimeter Wave Conference (2015), pp. 1744–1747.

Z. Y. Xu, “Approximate performance analysis of wireless ultraviolet links[C],” in IEEE International Conference on Acoustis, Speech and Signal Processing, 2007, pp. 577–580.
[Crossref]

Yuan, R. Z.

R. Z. Yuan and J. S. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

Yue, G.

Zhang, F.

Zhang, M.

M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
[Crossref] [PubMed]

X. Jiang, P. Luo, and M. Zhang, “Performance analysis of none-line-of-sight ultraviolet communications with multi-user interference,” in International Conference on Communications in China, 8(1), pp. 199–203 (2013).
[Crossref]

Zhang, X.

Zhao, S. H.

R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).

Zhao, T. F.

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).

Zhou, X.

Zhou, X. L.

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

Zuo, Y.

Acta Opt. Sin. (1)

P. Song, X. Z. Ke, Y. Y. Xiong, and T. F. Zhao, “Pulse broadening effect of non-line-of-sight ultraviolet in noncoplanar communication system,” Acta Opt. Sin. 36(11), 48–57 (2016).

Appl. Opt. (1)

Chin. J. Lasers (1)

T. F. Zhao, D. Jin, and P. Song, “Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication,” Chin. J. Lasers 42(6), 152–159 (2015).

China Commun. (1)

R. Z. Yuan and J. S. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

IEEE/OSA. J. Opt. Commun. Netw. (1)

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: modeling, capacity and coding,” IEEE/OSA. J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
[Crossref]

IET Optoelectron. (1)

areL. Liao, R. J. Drost, T. Lang, G. Chen, Z. Li, and B. M. Sadler, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectron. 9(5), 223–231 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Laser & Infrared (1)

R. X. Qiang, S. H. Zhao, and Y. Liu, “Influence of pulse broadening on bit error rate of ultraviolet communication,” Laser & Infrared 45(5), 559–563 (2015).

Opt. Commun. (1)

P. Song, X. L. Zhou, F. Song, T. F. Zhao, and Y. H. Li, “Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Commun. 405, 400–405 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Other (7)

Z. Y. Xu, “Opportunities and challenges of wireless optical communication,” in National Microwave Millimeter Wave Conference (2015), pp. 1744–1747.

Z. Y. Xu, “Approximate performance analysis of wireless ultraviolet links[C],” in IEEE International Conference on Acoustis, Speech and Signal Processing, 2007, pp. 577–580.
[Crossref]

X. Jiang, P. Luo, and M. Zhang, “Performance analysis of none-line-of-sight ultraviolet communications with multi-user interference,” in International Conference on Communications in China, 8(1), pp. 199–203 (2013).
[Crossref]

K. Y. Dong, Y. Lou, Y. Ding, S. Wang, H. L. Wang, and H. L. Jiang, “Research on UV scattering communication,” in International Symposium on Photoelectronic Detection and Imaging, 2013, 8906:890612.

H. P. Ding, G. Chen, A. K. Majumdar, and Z. Y. Xu, “A parametric single scattering channel model for non-line-of-sight ultraviolet communications,” in Proceedings of SPIE-The International Society for Optical Engineering, 2008, 7091:70910M1–70910M6.
[Crossref]

Y. X. Luo, “Characteristics of ultraviolet communication channel and building of voice communication platform,” Chinese Academy of Sciences, 2014.

J. Yang and B. Lu, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Antennas and Propagation,” 2014, pp. 753–756.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the research on the pulse response of the wireless UVC system in a mobile scene.
Fig. 2
Fig. 2 NLOS UV single-scatter propagation model in noncoplanar geometry.
Fig. 3
Fig. 3 NLOS UV single-scatter propagation model in coplanar geometry.
Fig. 4
Fig. 4 Contrast diagrams of experiments and simulations. (a) Experimental result, (b) Simulation result
Fig. 5
Fig. 5 Influence of node’s position change on pulse broadening.
Fig. 6
Fig. 6 Schematic of (a) receiver cone and (b) xy-plane projection.
Fig. 7
Fig. 7 Effect of elevation angle change at the transmitter on pulse broadening. (a)0° path, (b) 45° path, (c) 90° path, (d) 135° path, (e) 180° path
Fig. 8
Fig. 8 Effect of elevation angle change at the receiver on pulse broadening. (a)0° path, (b) 45° path, (c) 90° path, (d) 135° path, (e) 180° path
Fig. 9
Fig. 9 Effect of the same change in the elevation angle of the transceiver on the pulse broadening. (a)0° path, (b) 45° path, (c) 90° path, (d) 135° path, (e) 180° path
Fig. 10
Fig. 10 Effect of FOV angle variation on pulse width. (a)0° path, (b) 45° path, (c) 90° path, (d) 135° path, (e) 180° path
Fig. 11
Fig. 11 Influence of beam angle on impulse response width. (a)0° path, (b) 45° path, (c) 90° path, (d) 135° path, (e) 180° path

Tables (3)

Tables Icon

Table 1 Simulation parameters.

Tables Icon

Table 2 Geometric parameters of the transceiver.

Tables Icon

Table 3 Summary of pulse broadening trend when the elevation angle of the transmitter changes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E V " r = r B r C   α D   α B   θ A   θ B sinθ e k e (r+ r 1 ) δθδαδr · E t A r k s P(cos β s )cosζ 4 π Ω t r 1 2 = E t A r k s P(cos β s )cosζ 4 π Ω t r 1 2 k e e k e ( r 1 + r B + r C ) (cos θ B cos θ A )·( α B α D )( e k e r B e k e r C ),
β s =πTSR= cos 1 ( TS · SR | TS |·| SR | ),
E r = S (i,j,k) V E V (i,j,k) " r ,
h( t n )= ( S (i,j,k) V)( t nmin < t s < t nmax ) E V '' (i,j,k) r Δt ,
y=xtg 20 z=xtg 50 a= z 2 y 2 , b= x 2 + y 2 tgθ= a b

Metrics