Abstract

We demonstrate a Distributed Acoustic Sensor (DAS) based on Ultra-Weak Fiber Bragg Gratings (UWFBGs) using a scalable homodyne demodulation in direct detection. We show that a distributed interferometric system using delay and mixing of backscattering from consecutive identical gratings can be combined with a Phase-Generated Carrier Differentiate and Cross-Multiply (PGC-DCM) demodulation algorithm to perform dynamic measurements with high SNR, employing a simple narrowband laser and a pin photodiode. The proposed homodyne demodulation technique is suitable for real-time monitoring using distributed measurements, as it does not require computationally costly phase unwrapping common in conventional schemes and is robust against detrimental harmonic distortions, while not requiring additional mechanisms to handle division-by-zero operations. The demodulation scheme is also scalable, as it involves symmetric ordinary differentiation and integration operations suitable for processing with FPGA-based or analogue systems which, thanks to readily realizable schemes for implementing fractional order calculus, are also candidates for small-scale integration. We experimentally demonstrate the effectiveness of the technique by monitoring the dynamic response of a generic 2.5 kHz vibration applied to a PZT placed at the end of a sensing fiber comprised of a 1 km array of 200 UWFBGs each with a reflectivity of ~-43 dB written at a spacing of 5 m, with an SNR of ~34.52 dB.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection

Yonas Muanenda, Stefano Faralli, Claudio J. Oton, and Fabrizio Di Pasquale
Opt. Express 26(2) 687-701 (2018)

Coherent Φ-OTDR based on I/Q demodulation and homodyne detection

Zinan Wang, Li Zhang, Song Wang, Naitian Xue, Fei Peng, Mengqiu Fan, Wei Sun, Xianyang Qian, Jiarui Rao, and Yunjiang Rao
Opt. Express 24(2) 853-858 (2016)

Phase demodulation method in phase-sensitive OTDR without coherent detection

Zhou Sha, Hao Feng, and Zhoumo Zeng
Opt. Express 25(5) 4831-4844 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 1 (2018).
    [Crossref]
  2. Persistence Market Research, “Global Distributed Acoustic Sensing Market to Surpass US$ 2 Billion in Revenues by 2025,” http://www.persistencemarketresearch.com/mediarelease/distributed-acoustic-sensing-market.asp .
  3. S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
    [Crossref] [PubMed]
  4. S. Liehr, Y. Muanenda, S. Münzenberger, and K. Krebber, “Wavelength-modulated C-OTDR techniques for distributed dynamic measurement,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper TuE15.
    [Crossref]
  5. Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  6. C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
    [Crossref] [PubMed]
  7. Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. D. Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
    [Crossref] [PubMed]
  8. Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
    [Crossref]
  9. J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.
  10. M. Yang, C. Li, Z. Mei, J. Tang, H. Guo, and D. Jiang, “Thousands of fiber grating sensor array based on draw tower: a new platform for fiber-optic sensing,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper FB6.
    [Crossref]
  11. C. Li, Z. Mei, J. Tang, K. Yang, and M. Yang, “Distributed Acoustic Sensing System Based on Broadband Ultra-Weak Fiber Bragg Grating Array,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper ThE14.
    [Crossref]
  12. F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR Sensing System for High-Precision Dynamic Strain Measurement Based on Ultra-Weak Fiber Bragg Grating Array,” J. Lightwave Technol. 33(23), 4775–4780 (2015).
    [Crossref]
  13. P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
    [Crossref]
  14. C. Wang, Y. Shang, X. H. Liu, C. Wang, H. H. Yu, D. S. Jiang, and G. D. Peng, “Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings,” Opt. Express 23(22), 29038–29046 (2015).
    [Crossref] [PubMed]
  15. X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
    [Crossref]
  16. A. D. Kersey, K. L. Dorsey, and A. Dandridge, “Cross talk in a fiber-optic Fabry-Perot sensor array with ring reflectors,” Opt. Lett. 14(1), 93–95 (1989).
    [Crossref] [PubMed]
  17. C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol. 28(1), 39–42 (2007).
    [Crossref]
  18. J. Weng and Y. Lo, “Novel rotation algorithm for phase unwrapping applications,” Opt. Express 20(15), 16838–16860 (2012).
    [Crossref]
  19. Z. Cheng, D. Liu, Y. Yang, T. Ling, X. Chen, L. Zhang, J. Bai, Y. Shen, L. Miao, and W. Huang, “Practical phase unwrapping of interferometric fringes based on unscented Kalman filter technique,” Opt. Express 23(25), 32337–32349 (2015).
    [Crossref] [PubMed]
  20. D. Kitahara, M. Yamagishi, and I. Yamada, “A virtual resampling technique for algebraic two-dimensional phase unwrapping,” in Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), 3871–3875.
    [Crossref]
  21. A. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sens. J. 16(21), 1 (2016).
    [Crossref]
  22. Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
    [Crossref] [PubMed]
  23. Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).
  24. F. Wang, J. Xie, Z. Hu, S. Xiong, H. Luo, and Y. Hu, “Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique,” J. Lightwave Technol. 33(12), 2392–2397 (2015).
    [Crossref]
  25. Y. Li, Z. Liu, Y. Liu, L. Ma, Z. Tan, and S. Jian, “Interferometric vibration sensor using phase-generated carrier method,” Appl. Opt. 52(25), 6359–6363 (2013).
    [Crossref] [PubMed]
  26. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
    [Crossref]
  27. J. He, L. Wang, F. Li, and Y. Liu, “An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability,” J. Lightwave Technol. 28(22), 258–3265 (2010).
  28. S. C. Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
    [Crossref] [PubMed]
  29. Y. Liu, L. W. Wang, C. D. Tian, M. Zhang, and Y. B. Liao, “Analysis and optimization of the PGC method in all digital demodulation systems,” J. Lightwave Technol. 26(18), 3225–3233 (2008).
    [Crossref]
  30. L. Jin, X. Li, and M. Wu, “Realization of fractional order integrator by rational function in the form of continued product,” in Proceedings of IEEE International Conference on Mechatronics and Automation (IEEE, 2015), 1630–1635.
    [Crossref]
  31. M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
    [Crossref]
  32. M. G. Guvench, M. Miske, and E. Crain, “Design, fabrication and testing of CMOS operational amplifiers as training tool in analog integrated circuit design,” in Proceedings of the Fourteenth Biennial University/ Government/ Industry Microelectronics Symposium (IEEE, 2001), 193–196.
    [Crossref]
  33. A. C. B. Albason, N. M. L. Axalan, M. T. A. Gusad, J. R. E. Hizon, and M. D. Rosales, “Design Methodologies for Low-Power CMOS Operational Amplifiers in a 0.25μm Digital CMOS Process,” in Proceedings of TENCON 2006 - 2006 IEEE Region 10 Conference (IEEE, 2006), 1–4.
  34. R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
    [Crossref]
  35. P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
    [Crossref]
  36. C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
    [Crossref]
  37. D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
    [Crossref]
  38. H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
    [Crossref]

2018 (3)

Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 1 (2018).
[Crossref]

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

2017 (3)

S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
[Crossref] [PubMed]

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

2016 (4)

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. D. Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

A. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sens. J. 16(21), 1 (2016).
[Crossref]

2015 (4)

2013 (2)

Y. Li, Z. Liu, Y. Liu, L. Ma, Z. Tan, and S. Jian, “Interferometric vibration sensor using phase-generated carrier method,” Appl. Opt. 52(25), 6359–6363 (2013).
[Crossref] [PubMed]

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

2012 (1)

2011 (1)

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

2010 (1)

J. He, L. Wang, F. Li, and Y. Liu, “An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability,” J. Lightwave Technol. 28(22), 258–3265 (2010).

2009 (1)

R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
[Crossref]

2008 (1)

2007 (2)

S. C. Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
[Crossref] [PubMed]

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol. 28(1), 39–42 (2007).
[Crossref]

1989 (1)

1982 (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
[Crossref]

Bai, J.

Baker, C.

Bakir, B. B.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Bandyopadhyay, T. K.

R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
[Crossref]

Bao, X.

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
[Crossref] [PubMed]

Bernabé, S.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Bertsias, P.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

Chen, L.

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
[Crossref] [PubMed]

Chen, X.

Cheng, Z.

Dandridge, A.

A. D. Kersey, K. L. Dorsey, and A. Dandridge, “Cross talk in a fiber-optic Fabry-Perot sensor array with ring reflectors,” Opt. Lett. 14(1), 93–95 (1989).
[Crossref] [PubMed]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
[Crossref]

Di Pasquale, F.

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
[Crossref]

Dorsey, K. L.

Elwakil, A.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

Faralli, S.

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. D. Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
[Crossref]

Fedeli, J.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Fujikata, J.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
[Crossref]

Guo, H.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Hagihara, Y.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Haihu Yu, H. Y.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Han, P.

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

He, J.

J. He, L. Wang, F. Li, and Y. Liu, “An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability,” J. Lightwave Technol. 28(22), 258–3265 (2010).

Hu, Y.

Hu, Z.

Hua Yu, H. Y.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Huang, S. C.

Huang, W.

Huiyong Guo, H. G.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Inasaka, J.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Jian, S.

Jiang, D. S.

Jianguan Tang, J. T.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Jin, L.

L. Jin, X. Li, and M. Wu, “Realization of fractional order integrator by rational function in the form of continued product,” in Proceedings of IEEE International Conference on Mechatronics and Automation (IEEE, 2015), 1630–1635.
[Crossref]

Kersey, A. D.

Kopp, C.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Krebber, K.

Kurata, K.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Kurihara, M.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Li, F.

J. He, L. Wang, F. Li, and Y. Liu, “An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability,” J. Lightwave Technol. 28(22), 258–3265 (2010).

Li, L.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Li, X.

L. Jin, X. Li, and M. Wu, “Realization of fractional order integrator by rational function in the form of continued product,” in Proceedings of IEEE International Conference on Mechatronics and Automation (IEEE, 2015), 1630–1635.
[Crossref]

Li, Y.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Y. Li, Z. Liu, Y. Liu, L. Ma, Z. Tan, and S. Jian, “Interferometric vibration sensor using phase-generated carrier method,” Appl. Opt. 52(25), 6359–6363 (2013).
[Crossref] [PubMed]

Li, Z.

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

Liao, Y. B.

Liehr, S.

Lin, H.

Ling, T.

Liu, D.

Liu, X. H.

Liu, Y.

Liu, Z.

Lo, Y.

Luo, H.

Ma, L.

Madian, A. H.

M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
[Crossref]

Miao, L.

Minaei, S.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

Muanenda, Y.

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 1 (2018).
[Crossref]

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. D. Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
[Crossref]

Muanenda, Y. S.

Münzenberger, S.

Nandi, R.

R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
[Crossref]

Nannipieri, T.

Nedachi, T.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Okamoto, D.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Okawara, C.

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol. 28(1), 39–42 (2007).
[Crossref]

Orobtchouk, R.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Oton, C. J.

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. D. Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
[Crossref]

Pasquale, F. D.

Peng, G. D.

Porte, H.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Psychalinos, C.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

Radwan, A. G.

M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
[Crossref]

Safari, L.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

Said, L. A.

M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
[Crossref]

Saijyou, K.

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol. 28(1), 39–42 (2007).
[Crossref]

Sanyal, S. K.

R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
[Crossref]

Schrank, F.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Shan, Y.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Shang, Y.

Shen, Y.

Signorini, A.

Sun, Z.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Suzuki, Y.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Tan, Z.

Tang, J.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Tekin, T.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Tian, C. D.

Tokushima, M.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Tolba, M. F.

M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
[Crossref]

Tsuchida, J.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
[Crossref]

Vanus, B.

Wang, C.

Wang, F.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

F. Wang, J. Xie, Z. Hu, S. Xiong, H. Luo, and Y. Hu, “Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique,” J. Lightwave Technol. 33(12), 2392–2397 (2015).
[Crossref]

Wang, L.

J. He, L. Wang, F. Li, and Y. Liu, “An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability,” J. Lightwave Technol. 28(22), 258–3265 (2010).

Wang, L. W.

Wen, H.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Weng, J.

Wu, M.

L. Jin, X. Li, and M. Wu, “Realization of fractional order integrator by rational function in the form of continued product,” in Proceedings of IEEE International Conference on Mechatronics and Automation (IEEE, 2015), 1630–1635.
[Crossref]

Wu, X.

Wuilpart, M.

Xia, L.

Xiaofu Li, X. L.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Xie, J.

Xiong, S.

Yang, M.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Yang, Y.

Yashiki, K.

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Yu, H.

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

Yu, H. H.

Yu Zheng, Y. Z.

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

Zeng, J.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Zhang, A.

A. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sens. J. 16(21), 1 (2016).
[Crossref]

Zhang, L.

Zhang, M.

Zhang, S.

A. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sens. J. 16(21), 1 (2016).
[Crossref]

Zhang, X.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR Sensing System for High-Precision Dynamic Strain Measurement Based on Ultra-Weak Fiber Bragg Grating Array,” J. Lightwave Technol. 33(23), 4775–4780 (2015).
[Crossref]

Zhang, Y.

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR Sensing System for High-Precision Dynamic Strain Measurement Based on Ultra-Weak Fiber Bragg Grating Array,” J. Lightwave Technol. 33(23), 4775–4780 (2015).
[Crossref]

Zhu, F.

Zimmermann, L.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Acoust. Sci. Technol. (1)

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol. 28(1), 39–42 (2007).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

H. G. Huiyong Guo, J. T. Jianguan Tang, X. L. Xiaofu Li, Y. Z. Yu Zheng, H. Y. Hua Yu, and H. Y. Haihu Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11(3), 30602–30605 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

IEEE Photonics J. (2)

X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, “A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Han, Z. Li, L. Chen, and X. Bao, “A High-Speed Distributed Ultra-Weak FBG Sensing System With High Resolution,” IEEE Photonics Technol. Lett. 29(15), 1249–1252 (2017).
[Crossref]

IEEE Sens. J. (1)

A. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sens. J. 16(21), 1 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. Nandi, S. K. Sanyal, and T. K. Bandyopadhyay, “Single CFA-Based Integrator, Differentiator, Filter, and Sinusoid Oscillator,” IEEE Trans. Instrum. Meas. 58(8), 2557–2564 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE Trans. Microw. Theory Tech. 30(10), 1635–1641 (1982).
[Crossref]

J. Lightwave Technol. (4)

J. Sens. (1)

Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 1 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Stable dynamic phase demodulation in a DAS based on double-pulse ϕ-OTDR using homodyne demodulation and direct detection,” Proc. SPIE 10654, 10654 (2018).

Other (13)

L. Jin, X. Li, and M. Wu, “Realization of fractional order integrator by rational function in the form of continued product,” in Proceedings of IEEE International Conference on Mechatronics and Automation (IEEE, 2015), 1630–1635.
[Crossref]

M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, “FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition,” 29th International Conference on Microelectronics (IEEE,2017), 1–4.
[Crossref]

M. G. Guvench, M. Miske, and E. Crain, “Design, fabrication and testing of CMOS operational amplifiers as training tool in analog integrated circuit design,” in Proceedings of the Fourteenth Biennial University/ Government/ Industry Microelectronics Symposium (IEEE, 2001), 193–196.
[Crossref]

A. C. B. Albason, N. M. L. Axalan, M. T. A. Gusad, J. R. E. Hizon, and M. D. Rosales, “Design Methodologies for Low-Power CMOS Operational Amplifiers in a 0.25μm Digital CMOS Process,” in Proceedings of TENCON 2006 - 2006 IEEE Region 10 Conference (IEEE, 2006), 1–4.

P. Bertsias, L. Safari, S. Minaei, A. Elwakil, and C. Psychalinos, “Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity,” inProceedings of IEEE International Symposium on Circuits and Systems (IEEE,2018), 1–4.
[Crossref]

D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka, and K. Kurata, “25-Gbps 5×5 mm chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” inProceedings of 2015 IEEE Optical Interconnects Conference (IEEE, 2015), 56–57.
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing,” inProceedings of 19th Italian National Conference on Photonic Technologies (IEEE, 2017), 38.
[Crossref]

J. Tang, L. Li, H. Guo, H. Yu, H. Wen, and M. Yang, “Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array,” in Proceedings of 25th Optical Fiber Sensors Conference (IEEE, 2017), 1–4.

M. Yang, C. Li, Z. Mei, J. Tang, H. Guo, and D. Jiang, “Thousands of fiber grating sensor array based on draw tower: a new platform for fiber-optic sensing,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper FB6.
[Crossref]

C. Li, Z. Mei, J. Tang, K. Yang, and M. Yang, “Distributed Acoustic Sensing System Based on Broadband Ultra-Weak Fiber Bragg Grating Array,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper ThE14.
[Crossref]

S. Liehr, Y. Muanenda, S. Münzenberger, and K. Krebber, “Wavelength-modulated C-OTDR techniques for distributed dynamic measurement,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, (Optical Society of America,2018), paper TuE15.
[Crossref]

Persistence Market Research, “Global Distributed Acoustic Sensing Market to Surpass US$ 2 Billion in Revenues by 2025,” http://www.persistencemarketresearch.com/mediarelease/distributed-acoustic-sensing-market.asp .

D. Kitahara, M. Yamagishi, and I. Yamada, “A virtual resampling technique for algebraic two-dimensional phase unwrapping,” in Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), 3871–3875.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the operating principle of delayed interferometry to interrogate identical UWFBGs using a pulse of narrowband light.
Fig. 2
Fig. 2 Schematic of a double pulse ϕ-OTDR showing the backscattering from two adjacent points.
Fig. 3
Fig. 3 Mixing and low-pass filtering to obtain the intermediate signals used in PGC demodulation (LPF: Low-pass Filter).
Fig. 4
Fig. 4 Schematic of phase demodulation using PGC-DCM
Fig. 5
Fig. 5 Experimental setup of the proposed ϕ-OTDR sensor: Erbium-Doped Fiber Amplifier (EDFA); Optical Band-Pass Filter (OBPF); Acousto-Optic Modulator (AOM), Digital Acquisition (DAQ); Phase Modulator (PM); Piezoelectric Actuator (PZT).
Fig. 6
Fig. 6 500 raw traces showing reflections from the UWFBG array.
Fig. 7
Fig. 7 Back-reflection from 500 raw traces showing reflections from different parts of the (a) near end, (b) far-end of the UWFBG array.
Fig. 8
Fig. 8 Overlapped output of the interferometer near the position of PZT showing beating of reflections from adjacent UWFBGs.
Fig. 9
Fig. 9 Evolution of the signal at the point of vibration: (a) Raw time domain beating signal near the point of vibration and, power spectra of intermediate signals for: (b) component centered at ω0 and (c) component centered at 2ω0.
Fig. 10
Fig. 10 Intermediate components and the demodulated signal before and after high-pass filtering.
Fig. 11
Fig. 11 PGC-DCM demodulated dynamic responses of a 2.5 kHz vibration at two different instances.
Fig. 12
Fig. 12 Power spectrum of demodulated response of a 2.5 kHz PZT vibration.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E m (t)= E m exp[j δ m (t)+j φ m ], E k (t)= E k exp[jϕ'(t)+j δ k (t)+j φ k ],
I= E m 2 + E k 2 +2 E m E k cos(Δδ(t)+ϕ(t)),
I=A+ηBcos( Ccos ω o t+ϕ(t) ),
s 1 (t)G J 1 (C)sinϕ(t), s 2 (t)H J 2 (C)cosϕ(t).
d dt s DCM (t)[GH J 2 (C) J 1 (C)]×[ sin 2 ϕ(t)+ cos 2 ϕ(t)] d dt ϕ(t).
d dt s DCM (t)GH J 2 (C) J 1 (C) d dt ϕ(t).
s DCM (t)=GH J 2 (C) J 1 (C)ϕ(t).

Metrics