Abstract

We present an optical-trapping scheme based on an on-resonance photonic nanojet (PNJ) excited using a plane wave. A two-dimensional numerical simulation demonstrates that a PNJ is enhanced through resonance with whispering gallery modes (WGMs) and achieves a larger spatial distribution, providing a stable trapping region for nanoparticles nearly four times larger than those of the WGM nodes without broadening by the PNJ. To further enlarge the trapping region, an asymmetric micro-resonator lengthens the mode field of the on-resonance PNJ. We also propose an effective method for addressing the nanoparticle-induced resonance detuning through exciting high-order WGMs of a larger-mode field volume.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Trapping and manipulating nanoparticles in photonic nanojets

Haotian Wang, Xiang Wu, and Deyuan Shen
Opt. Lett. 41(7) 1652-1655 (2016)

Localized optical manipulation in optical ring resonators

Haotian Wang, Xiang Wu, and Deyuan Shen
Opt. Express 23(21) 27650-27660 (2015)

Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities

Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, and Yun-Feng Xiao
Photon. Res. 6(2) 99-108 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  3. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref] [PubMed]
  4. J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
    [Crossref]
  5. X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
    [Crossref] [PubMed]
  6. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
    [Crossref] [PubMed]
  7. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [Crossref] [PubMed]
  8. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  9. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [Crossref] [PubMed]
  10. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [Crossref] [PubMed]
  11. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  12. A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
    [Crossref] [PubMed]
  13. H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
    [Crossref] [PubMed]
  14. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  15. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
    [Crossref] [PubMed]
  16. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  17. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
    [Crossref] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  19. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  20. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref] [PubMed]
  21. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  22. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  23. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  24. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [Crossref] [PubMed]
  25. A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 162, 122–132 (2015).
    [Crossref]
  26. H. Wang, X. Wu, and D. Shen, “Trapping and manipulating nanoparticles in photonic nanojets,” Opt. Lett. 41(7), 1652–1655 (2016).
    [Crossref] [PubMed]
  27. I. Mahariq and H. Kurt, “Strong field enhancement of resonance modes in dielectric microcylinders,” J. Opt. Soc. Am. B 33(4), 656–662 (2016).
    [Crossref]
  28. I. Mahariq and H. Kurt, “On- and off-optical-resonance dynamics of dielectric microcylinders under plane wave illumination,” J. Opt. Soc. Am. B 32(6), 1022–1030 (2015).
    [Crossref]
  29. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
    [Crossref] [PubMed]
  30. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  31. M. Lester and M. Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Lett. 24(14), 936–938 (1999).
    [Crossref] [PubMed]
  32. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [Crossref] [PubMed]
  33. T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702–2712 (2007).
    [Crossref] [PubMed]
  34. H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
    [Crossref]
  35. X. Tu, X. Wu, L. Liu, and L. Xu, “High-Q unidirectional emission properties of the symmetric half-spiral microcavities,” J. Opt. Soc. Am. B 27(2), 300–304 (2010).
    [Crossref]
  36. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]

2016 (2)

2015 (3)

I. Mahariq and H. Kurt, “On- and off-optical-resonance dynamics of dielectric microcylinders under plane wave illumination,” J. Opt. Soc. Am. B 32(6), 1022–1030 (2015).
[Crossref]

A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 162, 122–132 (2015).
[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

2014 (1)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

2013 (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

2012 (2)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

2011 (4)

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

2010 (5)

X. Tu, X. Wu, L. Liu, and L. Xu, “High-Q unidirectional emission properties of the symmetric half-spiral microcavities,” J. Opt. Soc. Am. B 27(2), 300–304 (2010).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

2009 (4)

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

2008 (3)

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

1999 (1)

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Arnold, S.

Ashkin, A.

Astratov, V. N.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Backman, V.

Bjorkholm, J. E.

Block, S. M.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Cao, H.

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Chen, Y. F.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Chen, Z.

Chu, S.

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Cui, X.

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Darafsheh, A.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Davis, T. J.

Dziedzic, J. M.

Erickson, D.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Erni, D.

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Gong, Q.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Grujic, K.

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Hafner, C.

Heifetz, A.

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Hellesø, O.

Hole, J.

Holler, S.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jiang, X. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Keng, D.

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Khoshsima, M.

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Kong, S.-C.

Kurt, H.

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Lester, M.

Li, B. B.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Li, Y.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Liu, L.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Mahariq, I.

Mandal, S.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Neves, A. A. R.

A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 162, 122–132 (2015).
[Crossref]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nieto-Vesperinas, M.

Özdemir, S. K.

J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Serey, X.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shen, D.

Shopova, S. I.

Simpson, J. J.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

Taflove, A.

Teraoka, I.

Tong, L.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Tu, X.

Vollmer, F.

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, H.

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Wang, P.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Wiersig, J.

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Wilkinson, J.

Wu, X.

Xiao, Y. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Xu, L.

Yang, A. H. J.

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Yang, L.

J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Yu, X. C.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Zurawsky, W.

Adv. Mater. (1)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Zhu, Ş. K. Özdemir, and L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Quant. Spectrosc. Radiat. Transf. (1)

A. A. R. Neves, “Photonic nanojets in optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 162, 122–132 (2015).
[Crossref]

Lab Chip (3)

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nano Lett. (5)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Rev. Mod. Phys. (1)

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of optical trapping of nanoparticles.
Fig. 2
Fig. 2 Optical intensity distributions of (a) off- and (b) on-resonance PNJ. (c) Force field distribution for a 20-nm particle. The white arrows indicate the directions of the forces. (d) Zoomed-in image of the optical intensity distribution outside the microcylinder. The white lines present the trapping edge. In addition, (c) and (d) are amplified images for the dashed box in (b).
Fig. 3
Fig. 3 Optical intensity of on- and off-resonance PNJs and WGM decay based on the distance from the edge of the microcylinder.
Fig. 4
Fig. 4 (a) Optical intensity distribution of an on-resonance PNJ in a symmetric half-spiral resonator. (d) Zoomed-in image of the optical intensity distribution outside the microcylinder. The white line indicates the trapping edge, S = 10. In addition, (c) and (d) are the two characteristic lengths ls and lp as functions of the deformation parameter ε for the microcylinder, respectively.
Fig. 5
Fig. 5 (a) Optical forces vs. the distance between the microcylinder edge and the particles of different sizes. (b) Stability number as a function of the particle size.
Fig. 6
Fig. 6 Optical intensity distribution of (a) off- and (b) on-resonance PNJ. The PNJ is resonant with the radial second-order WGM. (c) Optical forces on particles with different sizes when they are approaching the microcylinder along the dashed line in (b). (d) Stability number as a function of the particle size.
Fig. 7
Fig. 7 Resonance frequency shift as function of distance between the particle and microcylinder.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F grad = 2π I 0 α c
E φ =e imφ
E r ={ A J m ( k φ ( m,l ) nr )rR A H m ( 1 ) ( k φ ( m,l ) n m r )r>R
S= W trap k T B
Δλ λ = Re( α ) | E p | 2 ε 0 ε | E | 2 dV

Metrics