Abstract

An effective method for wavelength tuning in an optical parametric oscillator (OPO) was proposed using noncollinear phase-matching (PM) in a ring cavity. This method was particularly useful for noncritically phase-matched (NCPM) KTP/KTA OPOs where changing the crystal orientation or working temperature is ineffective. A wide tuning range in the eye-safe band from 1572.9 nm to 1684.2 nm was realized pumped by an Nd:YAG laser at 1.06 μm in an NCPM KTP OPO while the internal noncollinear angle was tuned from 0 to 3.1° or the external angle from 0° to 5.8°, with slight variation of the deflection angle of one cavity mirror. The good beam quality and high spectrum intensity of the narrow-linewidth Nd:YAG laser resulted in 33.3% conversion efficiency for the collinear case and above 11% throughout the tuning range. Such OPOs have many potential applications where tunable eye-safe lasers are required, and the proposed wavelength tuning method can be extended to all kinds of OPOs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-average-power KTiOAsO4 optical parametric oscillator

Mark S. Webb, Peter F. Moulton, Jeffrey J. Kasinski, Ralph L. Burnham, Gabe Loiacono, and Richard Stolzenberger
Opt. Lett. 23(15) 1161-1163 (1998)

Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4

Zhaojun Liu, Qingpu Wang, Xingyu Zhang, Zejin Liu, Jun Chang, Hao Wang, Sasa Zhang, Shuzhen Fan, Guofan Jin, Xutang Tao, Shaojun Zhang, and Huaijin Zhang
Opt. Express 16(21) 17092-17097 (2008)

Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03  μm Yb:KGW laser

Xianghao Meng, Zhaohua Wang, Wenlong Tian, Huijun He, Shaobo Fang, and Zhiyi Wei
Opt. Lett. 43(4) 943-946 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Kotov, M. Likhachev, M. Bubnov, O. Medvedkov, D. Lipatov, A. Guryanov, K. Zaytsev, M. Jossent, and S. Février, “Millijoule pulse energy 100-nanosecond Er-doped fiber laser,” Opt. Lett. 40(7), 1189–1192 (2015).
    [Crossref] [PubMed]
  2. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
    [Crossref]
  3. X. Ding, C. Fan, Q. Sheng, B. Li, X. Yu, G. Zhang, B. Sun, L. Wu, H. Zhang, J. Liu, P. Jiang, W. Zhang, C. Zhao, and J. Yao, “5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO₄₋YVO₄ stimulated Raman conversion,” Opt. Express 22(23), 29111–29116 (2014).
    [Crossref] [PubMed]
  4. M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
    [Crossref]
  5. K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
    [Crossref]
  6. H. Li, X. Zhu, X. Ma, S. Li, and W. Chen, “Nanosecond high-pulse energy 1.57 μm KTA optical parametric amplifier with time delay,” Chin. Opt. Lett. 13(11), 111402 (2015).
    [Crossref]
  7. R. J. Foltynowicz and M. D. Wojcik, “Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter,” J. Appl. Remote Sens. 6(1), 063510 (2012).
    [Crossref]
  8. H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
    [Crossref]
  9. J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
    [Crossref]
  10. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
    [Crossref]
  11. J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, and W. Chen, “Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR,” Chin. Opt. Lett. 15(3), 031401 (2017).
    [Crossref]
  12. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [Crossref] [PubMed]
  13. K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
    [Crossref]
  14. J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
    [Crossref] [PubMed]
  15. S. Das, “Nd:YAG pumped tunable singly resonant optical parametric oscillator in mid-infrared,” J. Phys. D Appl. Phys. 42(8), 085107 (2009).
    [Crossref]
  16. S. X. Dou, D. Josse, and J. Zyss, “Comparison of collinear and one-beam noncritical noncollinear phase matching,” J. Opt. Soc. Am. B 9(8), 1312–1319 (1992).
    [Crossref]
  17. P. E. Powers and J. W. Haus, Fundamentals of nonlinear optics (CRC, 2017).

2018 (1)

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (2)

2014 (1)

2012 (1)

R. J. Foltynowicz and M. D. Wojcik, “Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter,” J. Appl. Remote Sens. 6(1), 063510 (2012).
[Crossref]

2011 (2)

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

2010 (1)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

2009 (2)

S. Das, “Nd:YAG pumped tunable singly resonant optical parametric oscillator in mid-infrared,” J. Phys. D Appl. Phys. 42(8), 085107 (2009).
[Crossref]

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

2008 (1)

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

2005 (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

2002 (1)

1992 (1)

Amediek, A.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

Bi, D.

Bubnov, M.

Chang, H. L.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Chen, D.

Chen, W.

Chen, Y. F.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Das, S.

S. Das, “Nd:YAG pumped tunable singly resonant optical parametric oscillator in mid-infrared,” J. Phys. D Appl. Phys. 42(8), 085107 (2009).
[Crossref]

Ding, X.

Dou, S. X.

Du, J.

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Ehret, G.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

Fan, C.

Février, S.

Fix, A.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

Foltynowicz, R. J.

R. J. Foltynowicz and M. D. Wojcik, “Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter,” J. Appl. Remote Sens. 6(1), 063510 (2012).
[Crossref]

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Geng, Y. F.

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Gorajek, L.

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

Guryanov, A.

He, J. L.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Hou, X.

Huang, H. T.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Huang, J. Y.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Huang, K. F.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Huang, M.

Huang, W. C.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Jabczynski, J.

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

Jiang, P.

Josse, D.

Jossent, M.

Kaskow, M.

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

Kato, K.

Kotov, L.

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Li, B.

Li, H.

Li, S.

Li, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Likhachev, M.

Lipatov, D.

Liu, F. Q.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Liu, J.

Liu, S. D.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Liu, Y.

Ma, X.

Medvedkov, O.

Mei, J.

Mu, Y.

Norwood, R. A.

Peyghambarian, N.

Sheng, Q.

Shi, W.

Sun, B.

Sun, Y.

Takaoka, E.

Wang, J. L.

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Wang, M.

Wang, P.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Wang, Y.

Wang, Y. Y.

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Wang, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Wirth, M.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

Wojcik, M. D.

R. J. Foltynowicz and M. D. Wojcik, “Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter,” J. Appl. Remote Sens. 6(1), 063510 (2012).
[Crossref]

Wu, L.

Xu, D.

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Xu, D. G.

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Xu, J. L.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Yang, H. W.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Yang, J. F.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Yang, X. Q.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Yang, Z.

Yao, J.

Yao, J. Q.

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Yu, X.

Zaytsev, K.

Zendzian, W.

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

Zhang, B. T.

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Zhang, G.

Zhang, H.

X. Ding, C. Fan, Q. Sheng, B. Li, X. Yu, G. Zhang, B. Sun, L. Wu, H. Zhang, J. Liu, P. Jiang, W. Zhang, C. Zhao, and J. Yao, “5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO₄₋YVO₄ stimulated Raman conversion,” Opt. Express 22(23), 29111–29116 (2014).
[Crossref] [PubMed]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Zhang, W.

Zhao, C.

Zhong, K.

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

Zhu, X.

Zhuang, W. Z.

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

Zyss, J.

Appl. Opt. (1)

Appl. Phys. B (2)

K. Zhong, Y. Y. Wang, D. G. Xu, Y. F. Geng, J. L. Wang, P. Wang, and J. Q. Yao, “Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4,” Appl. Phys. B 97(1), 61–66 (2009).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92(2), 295–302 (2008).
[Crossref]

Appl. Phys. Lett. (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Chin. Opt. Lett. (2)

J. Appl. Remote Sens. (1)

R. J. Foltynowicz and M. D. Wojcik, “Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter,” J. Appl. Remote Sens. 6(1), 063510 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

S. Das, “Nd:YAG pumped tunable singly resonant optical parametric oscillator in mid-infrared,” J. Phys. D Appl. Phys. 42(8), 085107 (2009).
[Crossref]

Laser Phys. Lett. (2)

H. L. Chang, W. Z. Zhuang, W. C. Huang, J. Y. Huang, K. F. Huang, and Y. F. Chen, “Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator,” Laser Phys. Lett. 8(9), 678–683 (2011).
[Crossref]

J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang, and H. T. Huang, “Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator,” Laser Phys. Lett. 8(1), 28–31 (2011).
[Crossref]

Opt. Commun. (1)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

M. Kaskow, L. Gorajek, W. Zendzian, and J. Jabczynski, “MW peak power KTP-OPO-based “eye-safe” transmitter,” Opto-Electron. Rev. 26(2), 188–193 (2018).
[Crossref]

Other (1)

P. E. Powers and J. W. Haus, Fundamentals of nonlinear optics (CRC, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the NCPM KTP OPO pumped by a Nd:YAG laser. The insets demonstrate the details of three interacting waves in noncollinear PM configuration.
Fig. 2
Fig. 2 Arrangement of the OPO cavity. Wavelength tuning by noncollinear PM is enabled by moving M3 along the circle.
Fig. 3
Fig. 3 Angle tuning range of KTP OPO for noncollinear (a) and collinear (b) PM. The PM angle represents the orientation of the resonant signal k-vector for both cases.
Fig. 4
Fig. 4 Output characteristics of the signal wave at 1572.9 nm.
Fig. 5
Fig. 5 Signal wavelength and the corresponding output power versus external noncollinear angle. The symbols and the curve represent the experimental and theoretical results, respectively.
Fig. 6
Fig. 6 Output signal spectra at 1572.9 nm, 1578.6 nm, 1599.3 nm, 1624.3 nm, 1646.0 nm, 1662.4 nm, and 1684.2 nm.
Fig. 7
Fig. 7 Temporal pulse shapes of the depleted pump pulse (a) and the output signal pulse (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k i 2 = k p 2 + k s 2 2 k p k s cosψ,

Metrics