Abstract

We present a novel deflectometry implementation termed Infinite Deflectometry. The technique provides a full aperture surface reconstruction sag map of freeform surfaces, including previously challenging to measure optics such as highly convex surfaces. The method relies on the creation of a virtual source enclosure around the tested optic, which creates a virtual 2π-steradian measurement range. To demonstrate the performance, a fast f/1.26 convex optical surface was measured with a commercial interferometer and with the Infinite Deflectometry system. After removing Zernike terms 1 through 37, the metrology tests resulted in absolute RMS surface values of 18.48 nm and 16.26 nm, respectively. Additionally, a freeform Alvarez lens was measured with the new technique and measured 22.34 𝜇m of surface sag RMS after piston, tip/tilt, and defocus had been removed. The result deviated by 488 nm RMS from a profilometer measurement while standard interferometry failed to measure the Alvarez lens due to its non-nulled wavefront dynamic range limitation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved system calibration for specular surface measurement by using reflections from a plane mirror

Tian Zhou, Kun Chen, Haoyun Wei, and Yan Li
Appl. Opt. 55(25) 7018-7028 (2016)

Point-cloud noncontact metrology of freeform optical surfaces

Jianing Yao, Alexander Anderson, and Jannick P. Rolland
Opt. Express 26(8) 10242-10265 (2018)

Improved zonal integration method for high accurate surface reconstruction in quantitative deflectometry

Mengyang Li, Dahai Li, Chengying Jin, Kewei E, Xiaodong Yuan, Zhao Xiong, and Qionghua Wang
Appl. Opt. 56(13) F144-F151 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).
  2. S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).
  3. T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).
  4. D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).
  5. S. C. West, R. Angel, B. Cuerden, W. Davison, J. Hagen, H. M. Martin, D. W. Kim, and B. Sisk, “Development and Results for Stressed-lap Polishing of Large Telescope Mirrors1,” Classical Optics 2014 (2014), Paper OTh2B.4 (Optical Society of America, 2014), p. OTh2B.4.
  6. I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
    [Crossref]
  7. D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.
  8. M. B. Dubin, P. Su, and J. H. Burge, “Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres,” (2009), 7426, 74260S–74260S–10.
  9. S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).
  10. R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
    [Crossref]
  11. D. W. Kim, C. Oh, A. Lowman, G. A. Smith, M. Aftab, and J. H. Burge, “Manufacturing of super-polished large aspheric/freeform optics,” (2016), Vol. 9912, pp. 99120F–99120F–9.
  12. J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
    [Crossref]
  13. C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).
  14. S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
    [Crossref]
  15. Z. Tian, W. Yang, Y. Sui, Y. Kang, W. Liu, and H. Yang, “A high-accuracy and convenient figure measurement system for large convex lens,” Opt. Express 20(10), 10761–10775 (2012).
    [Crossref] [PubMed]
  16. Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).
  17. Y.-C. Chen, C.-W. Liang, H.-S. Chang, and P.-C. Lin, “Reconstruction of reference error in high overlapping density subaperture stitching interferometry,” Opt. Express 26(22), 29123–29133 (2018).
    [Crossref] [PubMed]
  18. L. Zhang, D. Liu, T. Shi, Y. Yang, S. Chong, B. Ge, Y. Shen, and J. Bai, “Aspheric subaperture stitching based on system modeling,” Opt. Express 23(15), 19176–19188 (2015).
    [Crossref] [PubMed]
  19. D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).
  20. I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).
  21. C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).
  22. R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).
  23. J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).
  24. P. Candry and B. Maximus, “Projection displays: New technologies, challenges, and applications,” J. Soc. Inf. Disp. 23(8), 347–357 (2015).
    [Crossref]
  25. J.-W. Huang, “Design and Fabrication of Ultra-Short Throw Ratio Projector Based on Liquid Crystal on Silicon,” Liquid Crystals - Recent Advancements in Fundamental and Device Technologies (2018).
  26. B. Martin, J. Burge, S. Miller, S. Warner, and C. Zhao, “Fabrication and Testing of 8.4 m Off-Axis Segments for the Giant Magellan Telescope,” (Optical Society of America, 2008), p. OWD6.
  27. H. M. Martin, R. G. Allen, J. H. Burge, J. M. Davis, W. B. Davison, M. Johns, D. W. Kim, J. S. Kingsley, K. Law, R. D. Lutz, P. A. Strittmatter, P. Su, M. T. Tuell, S. C. West, and P. Zhou, “Production of primary mirror segments for the Giant Magellan Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (International Society for Optics and Photonics, 2014), Vol. 9151, p. 91510J.
  28. A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).
  29. R. Huang, “High precision optical surface metrology using deflectometry,” Ph.D., The University of Arizona (2015).
  30. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. JOSA 70(8), 998–1006 (1980).
    [Crossref]
  31. W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.
  32. L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free deflectometry for freeform optics measurement using an iterative reconstruction technique,” Opt. Lett., OL 43, 2110–2113 (2018).
    [Crossref]
  33. L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

2018 (4)

I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
[Crossref]

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

Y.-C. Chen, C.-W. Liang, H.-S. Chang, and P.-C. Lin, “Reconstruction of reference error in high overlapping density subaperture stitching interferometry,” Opt. Express 26(22), 29123–29133 (2018).
[Crossref] [PubMed]

2017 (2)

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

2016 (2)

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

2015 (4)

P. Candry and B. Maximus, “Projection displays: New technologies, challenges, and applications,” J. Soc. Inf. Disp. 23(8), 347–357 (2015).
[Crossref]

L. Zhang, D. Liu, T. Shi, Y. Yang, S. Chong, B. Ge, Y. Shen, and J. Bai, “Aspheric subaperture stitching based on system modeling,” Opt. Express 23(15), 19176–19188 (2015).
[Crossref] [PubMed]

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

2014 (1)

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

2013 (3)

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

2012 (1)

2007 (1)

I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).

1980 (1)

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. JOSA 70(8), 998–1006 (1980).
[Crossref]

Acevedo-Feliz, D.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Aftab, M.

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

Bai, J.

Balzer, J.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Beier, M.

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

Bergmann, R. B.

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

Beyerer, J.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Blalock, T.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).

Burge, J. H.

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

Burke, J.

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

Candry, P.

P. Candry and B. Maximus, “Projection displays: New technologies, challenges, and applications,” J. Soc. Inf. Disp. 23(8), 347–357 (2015).
[Crossref]

Castán-Ricaño, D.

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

Chang, H.-S.

Chen, S.

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

Chen, Y.

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

Chen, Y.-C.

Choi, H.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

Chong, S.

Cornejo-Rodríguez, A.

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

Dai, Y.

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

Damm, C.

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

Davies, M. A.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Dubin, M.

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

Dutterer, B. S.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Eberhardt, R.

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

Frater, E.

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

Ge, B.

Gebhardt, A.

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

Granados-Agustín, F. S.

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

Graves, L.

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

Graves, L. R.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

Gurganus, D.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Hadwiger, M.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Harrison, L.

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

Heimsath, A.

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

Heinisch, J.

I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).

Höfer, S.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Horne, T.

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

Huang, L.

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

Huang, R.

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

Idir, M.

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

Jannuzi, B. T.

I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
[Crossref]

Kang, Y.

Kim, D.

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

Kim, D. W.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
[Crossref]

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

Krey, S.

I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).

Li, S.

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

Li, W.

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

Liang, C.-W.

Lin, P.-C.

Liu, D.

Liu, W.

Loose, R.

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

Lowman, A. E.

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Maximus, B.

P. Candry and B. Maximus, “Projection displays: New technologies, challenges, and applications,” J. Soc. Inf. Disp. 23(8), 347–357 (2015).
[Crossref]

Medicus, K.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).

Miao, E.

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

Nelson, J. D.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).

Novak, S.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Oh, C. J.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

Owen, J. D.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Percino-Zacarías, E.

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

Peschel, T.

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

Risse, S.

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

Scheele, I.

I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).

Scheiding, S.

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

Shen, Y.

Shi, T.

Smith, G.

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

Smith, G. A.

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Soatto, S.

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

Song, W.

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

Southwell, W. H.

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. JOSA 70(8), 998–1006 (1980).
[Crossref]

Su, P.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

Su, T.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Sui, Y.

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

Z. Tian, W. Yang, Y. Sui, Y. Kang, W. Liu, and H. Yang, “A high-accuracy and convenient figure measurement system for large convex lens,” Opt. Express 20(10), 10761–10775 (2012).
[Crossref] [PubMed]

Symmons, A.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

Tian, Z.

Trumper, I.

I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
[Crossref]

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

Tünnermann, A.

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

von Kopylow, C.

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

West, S. C.

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

Xue, S.

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

Yang, H.

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

Z. Tian, W. Yang, Y. Sui, Y. Kang, W. Liu, and H. Yang, “A high-accuracy and convenient figure measurement system for large convex lens,” Opt. Express 20(10), 10761–10775 (2012).
[Crossref] [PubMed]

Yang, W.

Yang, Y.

Zappellini, G. B.

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

Zeitner, U.-D.

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

Zhang, L.

Zhao, C.

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Zhao, W.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

Zhou, P.

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics (1)

S. Scheiding, M. Beier, U.-D. Zeitner, S. Risse, and A. Gebhardt, “Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. International Society for Optics and Photonics 8613, 86130J (2013).

Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics (2)

C. J. Oh, A. E. Lowman, M. Dubin, G. Smith, E. Frater, C. Zhao, and J. H. Burge, “Modern technologies of fabrication and testing of large convex secondary mirrors,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120R (2016).

C. J. Oh, A. E. Lowman, G. A. Smith, P. Su, R. Huang, T. Su, D. Kim, C. Zhao, P. Zhou, and J. H. Burge, “Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. International Society for Optics and Photonics 9912, 99120O (2016).

Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics (1)

A. E. Lowman, G. A. Smith, L. Harrison, S. C. West, and C. J. Oh, “Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS),” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. International Society for Optics and Photonics 10706, 107061E (2018).

J. Eur. Opt. Soc. Rapid Publ. (1)

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. B. Bergmann, “Qualifying parabolic mirrors with deflectometry,” J. Eur. Opt. Soc. Rapid Publ. 8, 13014 (2013).
[Crossref]

J. Opt. Soc. Am. JOSA (1)

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. JOSA 70(8), 998–1006 (1980).
[Crossref]

J. Opt. Soc. Korea. (1)

Y. Chen, E. Miao, Y. Sui, and H. Yang, “Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization,” J. Opt. Soc. Korea. 18, 341–344 (2014).

J. Soc. Inf. Disp. (1)

P. Candry and B. Maximus, “Projection displays: New technologies, challenges, and applications,” J. Soc. Inf. Disp. 23(8), 347–357 (2015).
[Crossref]

Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics (1)

D. Castán-Ricaño, F. S. Granados-Agustín, E. Percino-Zacarías, and A. Cornejo-Rodríguez, “Increase in the measurement of the normal vectors of an aspherical surface used in deflectometry,” Modeling Aspects in Optical Metrology VI. International Society for Optics and Photonics 10330, 103301W (2017).

OE, OPEGAR (1)

R. Huang, P. Su, J. H. Burge, L. Huang, and M. Idir, “High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry,” OE, OPEGAR 54(8), 084103 (2015).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

S. Chen, S. Xue, Y. Dai, and S. Li, “Subaperture stitching test of convex aspheres by using the reconfigurable optical null,” Opt. Laser Technol. 91, 175–184 (2017).
[Crossref]

Opt. Lasers Eng. (1)

I. Trumper, B. T. Jannuzi, and D. W. Kim, “Emerging technology for astronomical optics metrology,” Opt. Lasers Eng. 104, 22–31 (2018).
[Crossref]

Optical Manufacturing and Testing X. International Society for Optics and Photonics (1)

R. Huang, P. Su, T. Horne, G. B. Zappellini, and J. H. Burge, “Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System),” Optical Manufacturing and Testing X. International Society for Optics and Photonics 8838, 883807 (2013).

Optical Manufacturing and Testing XI. International Society for Optics and Photonics (1)

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Optical Manufacturing and Testing XI. International Society for Optics and Photonics 9575, 95750H (2015).

Optical Manufacturing and Testing XII. International Society for Optics and Photonics (1)

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free optical surface reconstruction from deflectometry data,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics 10742, 107420Y (2018).

Optifab 2007: Technical Digest. International Society for Optics and Photonics (1)

I. Scheele, S. Krey, and J. Heinisch, “Measurement of aspheric surfaces with 3D-deflectometry,” Optifab 2007: Technical Digest. International Society for Optics and Photonics 10316, 103160P (2007).

Other (14)

J.-W. Huang, “Design and Fabrication of Ultra-Short Throw Ratio Projector Based on Liquid Crystal on Silicon,” Liquid Crystals - Recent Advancements in Fundamental and Device Technologies (2018).

B. Martin, J. Burge, S. Miller, S. Warner, and C. Zhao, “Fabrication and Testing of 8.4 m Off-Axis Segments for the Giant Magellan Telescope,” (Optical Society of America, 2008), p. OWD6.

H. M. Martin, R. G. Allen, J. H. Burge, J. M. Davis, W. B. Davison, M. Johns, D. W. Kim, J. S. Kingsley, K. Law, R. D. Lutz, P. A. Strittmatter, P. Su, M. T. Tuell, S. C. West, and P. Zhou, “Production of primary mirror segments for the Giant Magellan Telescope,” Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (International Society for Optics and Photonics, 2014), Vol. 9151, p. 91510J.

D. Gurganus, J. D. Owen, B. S. Dutterer, S. Novak, A. Symmons, and M. A. Davies, “Precision glass molding of freeform optics,” Optical Manufacturing and Testing XII. International Society for Optics and Photonics10742, 107420Q (2018).

S. C. West, R. Angel, B. Cuerden, W. Davison, J. Hagen, H. M. Martin, D. W. Kim, and B. Sisk, “Development and Results for Stressed-lap Polishing of Large Telescope Mirrors1,” Classical Optics 2014 (2014), Paper OTh2B.4 (Optical Society of America, 2014), p. OTh2B.4.

M. Beier, S. Scheiding, A. Gebhardt, R. Loose, S. Risse, R. Eberhardt, and A. Tünnermann, “Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF),” Optifab 2013. International Society for Optics and Photonics8884, 88840S (2013).

S. Risse, S. Scheiding, M. Beier, A. Gebhardt, C. Damm, and T. Peschel, “Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes,” Optifab 2014. International Society for Optics and Photonics9151, 91510M (2014).

D. W. Kim, M. Aftab, H. Choi, L. Graves, and I. Trumper, “Optical Metrology Systems Spanning the Full Spatial Frequency Spectrum,” (Optical Society of America, 2016), FW5G.4.

M. B. Dubin, P. Su, and J. H. Burge, “Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres,” (2009), 7426, 74260S–74260S–10.

D. W. Kim, C. Oh, A. Lowman, G. A. Smith, M. Aftab, and J. H. Burge, “Manufacturing of super-polished large aspheric/freeform optics,” (2016), Vol. 9912, pp. 99120F–99120F–9.

W. Zhao, L. R. Graves, R. Huang, W. Song, and D. Kim, “Iterative surface construction for blind deflectometry,” 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment (International Society for Optics and Photonics, 2016), 9684, p. 96843X.

L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, T. Su, and D. W. Kim, “Model-free deflectometry for freeform optics measurement using an iterative reconstruction technique,” Opt. Lett., OL 43, 2110–2113 (2018).
[Crossref]

J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer, “Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,” 2014 2nd International Conference on 3D Vision 448–455(2014).

R. Huang, “High precision optical surface metrology using deflectometry,” Ph.D., The University of Arizona (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A traditional deflectometry system utilizes a camera and source to test a UUT. If considered in reverse, rays can be traced from the camera to the UUT where they are deflected by the UUT mirror surface and, if they pass through the source area, the local slope on the UUT can be determined using geometry. For some surfaces, such as a convex optic, a regular screen is not large enough to allow for testing the full area of the UUT due to the missing rays (a) and presents an area where deflectometry has historically not been able to provide full aperture metrology maps. One alternative is a source screen which encloses the UUT, allowing for testing the full range of surface slopes without missing rays (b).
Fig. 2
Fig. 2 By tilting a high precision screen over a UUT, and correctly positioning the camera, a partial area of the UUT can be measured using traditional deflectometry (a). If the UUT is placed on a precision rotation stage and clocked to multiple angular orientations (e.g., 6 screen positions), the full area of the UUT can be tested. This can be thought of as instead virtually clocking the screen and camera, creating a virtual source enclosure allowing for the same precision metrology over the full UUT aperture. Because each screen can only cover a segment of the UUT, a reverse ray trace from the camera pinhole to the UUT is performed to determine the intercept locations with the virtual screens, seen from the top down as scattered points (b).
Fig. 3
Fig. 3 Infinite Deflectometry uses a traditional deflectometry system in a unique configuration combined with clocking the UUT, which results in N virtual deflectometry system measurement sets, each measuring a subaperture area of the UUT. Each measurement outputs standard deflectometry outputs, resulting in global x,y,z coordinates for every test for the camera (C0:N-1), UUT (U0:N-1), and screen (S0:N-1). Local slope maps in the global x and y directions for all subaperture tests are then determined, called X0:N-1 and Y0:N-1 respectively. A linear interpolation is used to fit the subaperture slope maps into full aperture x and y slope maps, called TX and TY respectively, which are integrated using a Southwell integration to produce a full aperture reconstructed surface map of the convex UUT, called UR.
Fig. 4
Fig. 4 A fast f/1.26 convex spherical optic with a 50 mm diameter clear aperture was measured using the Infinite Deflectometry system (a). As a comparison, a Zygo VerifireTM MST interferometer was used to provide an independent measurement of the same optic (b), which measured a maximum 45.29 mm diameter aperture inside of the 50 mm clear aperture. The Infinite Deflectometry system was composed of a camera, source, and the UUT on a rotation stage, and all components were mounted in place and measured using a CMM (c).
Fig. 5
Fig. 5 An Alvarez lens was generated in a 1-inch PMMA disk. The surface was designed to have a 6 mm inner optical aperture which had 17 µm of horizontal coma and −17 µm of 45° trefoil. The surface was measured using the ID system, which measured the full aperture (left), as well using the Zygo VerifireTM MST Interferometer using a reference flat without a custom CGH (right). Without a custom null optic, the fringe density exceeded the measurement capabilities of the interferometer, making it impossible to measure the central optical aperture.
Fig. 6
Fig. 6 The infinite deflectometry method utilizes the clocking of the UUT to create a virtual 2π-steradian tipi-shaped source area which enclose the UUT. A deflectometry test is performed at each clocking position, and the local slopes at each clocking are calculated and then stitched together to create a full aperture local slope map of the UUT, which are integrated to generate the total sag map. The process was performed for a fast f/1.26 convex sphere for 6 (1st column), 45 (2nd column), 90 (3rd column), and 180 (4th column) clocking step positions, equally spaced over a full 2π rotation. Stitching errors are apparent for fewer clocking positions, and manifest clearly as Zernike terms 1:4 (1st row), 1:6 (2nd row), 1:21 (3rd row), and 1:37 (4th row) are removed from the surface map.
Fig. 7
Fig. 7 A fast f/1.26 convex mirror UUT was tested using both the Infinite Deflectometry method (top row) which measured the full 50 mm diameter aperture of the UUT and a commercial Zygo VerifireTM MST interferometer (bottom row), which measured a limited measurement area of a 45.29 mm diameter aperture on the UUT. Due to uncertainties in both systems for the UUT piston, tip/tilt, and defocus, Zernike terms 1:4 were removed for both reconstruction maps (1st column). Additionally, to better compare the surface reconstruction across spatial frequencies, Zernike terms 1:6 (2nd column), 1:21 (3rd column), and 1:37 (4th column) were removed for both reconstruction maps.
Fig. 8
Fig. 8 An Alvarez lens represents a highly freeform surface which presents a unique metrology problem. Using a diamond turning machine a 6 mm diameter Alvarez lens with 17 µm of horizontal coma and −17 µm of trefoil was designed (top right) and manufactured. The final surface generated was measured using the Infinite Deflectometry system with 180 clocking positions (top left). To cross-check the measured data performance, a KLA Alpha-Step D-500 profilometer was used to measure a profile of the optic, shown as a black line in the surface map (top left). The surface height of the profile from the ID measurement, and the profilometer were compared (bottom left) and the difference was calculated (bottom right).
Fig. 9
Fig. 9 Using a CNC diamond turning process, a 6 mm diameter Alvarez lens was generated on a PMMA disk and measured. The infinite deflectometry surface map was fitted with standard Zernike terms 1:37 (black bars). This was compared to the Zernike terms representing the design values (checked bars).

Tables (1)

Tables Icon

Table 1 Surface Sag RMS of 45.29 mm Diameter Central Aperture on f/1.26 50 mm Diameter Convex UUT from ID and INT Surface Sag Maps

Metrics