Abstract

We develop a facile, fast, and cost-effective method based on the electrowetting effect to fabricate concave microlens arrays (MLA) with a tunable height-to-radius ratio, namely aspect ratio (AR). The electric parameters including voltage and frequency are demonstrated to play an important role in the MLA forming process. With the optimized frequency of 5 Hz, the AR of MLA are tuned from 0.057 to 0.693 for an increasing voltage from 0 V to 180 V. The optical properties of the MLA, including their transmittance and light diffusion capability, are investigated by spectroscopic measurements and ray-tracing simulations. We show that the overall transmittance can be maintained above around 90% over the whole visible range, and that an AR exceeding 0.366 is required to sufficiently broaden the transmitted light angular distribution. These properties enable to apply the developed MLA films to correlated-color-temperature (CCT)-tunable light-emitting-diodes (LEDs) to enhance their angular color uniformity (ACU). Our results show that the ACU of CCT-tunable LEDs is significantly improved while preserving almost the same lumen output, and that the MLA with the highest AR exhibits the best ACU performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes

Yong Tang, Guanwei Liang, Junchi Chen, Shudong Yu, Zongtao Li, Longshi Rao, and Binhai Yu
Opt. Express 25(17) 20598-20611 (2017)

Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film

Shudong Yu, Zongtao Li, Guanwei Liang, Yong Tang, Binhai Yu, and Kaihang Chen
Photon. Res. 4(4) 140-145 (2016)

CCT-tunable LED device with excellent ACU by using micro-structure array film

Qiu Chen, Zongtao Li, Kaihang Chen, Yong Tang, Xinrui Ding, and Binhai Yu
Opt. Express 24(15) 16695-16704 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
    [Crossref] [PubMed]
  2. J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
    [Crossref]
  3. X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
    [Crossref] [PubMed]
  4. H. Y. Lin, Y. M. Pai, J. X. Shi, X. Y. Chen, C. H. Lin, C. M. Weng, T. Y. Chen, C. C. Lin, M. D. B. Charlton, Y. P. Huang, C. H. Chen, H. P. Chen, and H. C. Kuo, “Optimization of nano-honeycomb structures for flexible w-LEDs,” Opt. Express 25(17), 20466–20476 (2017).
    [Crossref] [PubMed]
  5. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
    [Crossref]
  6. Y. U. Shudong, Y. Tang, L. I. Zongtao, K. Chen, X. Ding, and Y. U. Binhai, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6(2), 90 (2018).
    [Crossref]
  7. S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
    [Crossref]
  8. X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).
  9. Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
    [Crossref]
  10. J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).
  11. Z. Huai, L. Sheng, and L. Xiaobing, “Enhancing Angular Color Uniformity of Phosphor-Converted White Light-Emitting Diodes by Phosphor Dip-Transfer Coating,” J. Lightwave Technol. 31(12), 1987–1993 (2013).
    [Crossref]
  12. S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42(23), 4962–4965 (2017).
    [Crossref] [PubMed]
  13. L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017).
    [Crossref] [PubMed]
  14. Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
    [Crossref]
  15. J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
    [Crossref]
  16. J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
    [Crossref]
  17. Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes,” Opt. Express 25(17), 20598–20611 (2017).
    [Crossref] [PubMed]
  18. H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express 19(S4Suppl 4), A930–A936 (2011).
    [Crossref] [PubMed]
  19. S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, “Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film,” Photon. Res. 4(4), 140 (2016).
    [Crossref]
  20. Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016).
    [Crossref] [PubMed]
  21. A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
    [Crossref]
  22. A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
    [Crossref]
  23. C. Y. Liu, K. J. Chen, D. W. Lin, C. Y. Lee, C. C. Lin, S. H. Chien, M. H. Shih, G. C. Chi, C. Y. Chang, and H. C. Kuo, “Improvement of emission uniformity by using micro-cone patterned PDMS film,” Opt. Express 22(4), 4516–4522 (2014).
    [Crossref] [PubMed]
  24. J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
    [Crossref] [PubMed]
  25. R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
    [Crossref] [PubMed]
  26. J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
    [PubMed]
  27. M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999).
    [Crossref]
  28. A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–3551 (1994).
    [Crossref]
  29. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  30. J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
    [Crossref]
  31. H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
    [Crossref] [PubMed]
  32. C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
    [Crossref]
  33. D. Xie, X. Chang, X. Shu, Y. Wang, H. Ding, and Y. Liu, “Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology,” Opt. Express 23(4), 5154–5166 (2015).
    [Crossref] [PubMed]
  34. X. J. Shen and L. Lin, Micro Plastic Embossing Process: Experimental and Theoretical Characterizations (Springer Berlin Heidelberg, 2001).
  35. M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
    [Crossref] [PubMed]
  36. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
    [Crossref]
  37. R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
    [Crossref]
  38. B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
    [Crossref] [PubMed]
  39. Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
    [Crossref]
  40. Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
    [Crossref] [PubMed]
  41. C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
    [Crossref] [PubMed]
  42. Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
    [Crossref]
  43. B. Yang, J. Zhou, Q. Chen, L. Lei, and K. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
    [Crossref] [PubMed]
  44. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
    [Crossref] [PubMed]
  45. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv Mater 24, OP165–169, OP190 (2012).
    [Crossref]
  46. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
    [Crossref]
  47. X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
    [Crossref]
  48. X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
    [Crossref] [PubMed]
  49. X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
    [Crossref] [PubMed]
  50. H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
    [Crossref] [PubMed]
  51. D. Jacqmin, Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling (Academic Press Professional, Inc., 1999).
  52. C. Zhou, P. Yue, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu, “3D Phase-Field Simulations of Interfacial Dynamics in Viscoelastic Fluids with Adaptive Meshing,” in 61st Annual Meeting of the APS Division of Fluid Dynamics (2008).
  53. X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
    [Crossref]

2019 (1)

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

2018 (8)

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Y. U. Shudong, Y. Tang, L. I. Zongtao, K. Chen, X. Ding, and Y. U. Binhai, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6(2), 90 (2018).
[Crossref]

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref] [PubMed]

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

B. Yang, J. Zhou, Q. Chen, L. Lei, and K. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
[Crossref] [PubMed]

2017 (10)

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes,” Opt. Express 25(17), 20598–20611 (2017).
[Crossref] [PubMed]

S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
[Crossref]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42(23), 4962–4965 (2017).
[Crossref] [PubMed]

L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017).
[Crossref] [PubMed]

T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
[Crossref] [PubMed]

H. Y. Lin, Y. M. Pai, J. X. Shi, X. Y. Chen, C. H. Lin, C. M. Weng, T. Y. Chen, C. C. Lin, M. D. B. Charlton, Y. P. Huang, C. H. Chen, H. P. Chen, and H. C. Kuo, “Optimization of nano-honeycomb structures for flexible w-LEDs,” Opt. Express 25(17), 20466–20476 (2017).
[Crossref] [PubMed]

R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
[Crossref] [PubMed]

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

2016 (7)

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, “Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film,” Photon. Res. 4(4), 140 (2016).
[Crossref]

Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016).
[Crossref] [PubMed]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

2015 (3)

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

D. Xie, X. Chang, X. Shu, Y. Wang, H. Ding, and Y. Liu, “Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology,” Opt. Express 23(4), 5154–5166 (2015).
[Crossref] [PubMed]

2014 (3)

M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
[Crossref] [PubMed]

A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
[Crossref]

C. Y. Liu, K. J. Chen, D. W. Lin, C. Y. Lee, C. C. Lin, S. H. Chien, M. H. Shih, G. C. Chi, C. Y. Chang, and H. C. Kuo, “Improvement of emission uniformity by using micro-cone patterned PDMS film,” Opt. Express 22(4), 4516–4522 (2014).
[Crossref] [PubMed]

2013 (4)

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Z. Huai, L. Sheng, and L. Xiaobing, “Enhancing Angular Color Uniformity of Phosphor-Converted White Light-Emitting Diodes by Phosphor Dip-Transfer Coating,” J. Lightwave Technol. 31(12), 1987–1993 (2013).
[Crossref]

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

2012 (1)

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

2011 (5)

2008 (1)

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

2007 (1)

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

2006 (1)

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

1999 (1)

M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999).
[Crossref]

1996 (1)

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[Crossref]

1994 (1)

A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–3551 (1994).
[Crossref]

1988 (1)

Ahmed, R.

R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
[Crossref] [PubMed]

Berge, B.

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[Crossref]

Bian, H.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Binhai, Y. U.

Boiko, D. L.

Brauer, N. B.

Brugger, J.

Bu, R.

Butt, H.

R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
[Crossref] [PubMed]

Cao, W.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Cassidy, V.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Chan, P. C. H.

A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
[Crossref]

Chang, C. Y.

C. Y. Liu, K. J. Chen, D. W. Lin, C. Y. Lee, C. C. Lin, S. H. Chien, M. H. Shih, G. C. Chi, C. Y. Chang, and H. C. Kuo, “Improvement of emission uniformity by using micro-cone patterned PDMS film,” Opt. Express 22(4), 4516–4522 (2014).
[Crossref] [PubMed]

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Chang, J. H.

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Chang, X.

Charbon, E.

Charlton, M. D. B.

Chen, C. H.

Chen, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Chen, H.

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

Chen, H. C.

Chen, H. P.

Chen, J.

Chen, K.

Chen, K. J.

Chen, M.

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Chen, M. X.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Chen, Q.

Chen, T. Y.

Chen, X.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Chen, X. Y.

Chen, Y.

S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
[Crossref]

Chen, Y.-H.

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Cheng, H.

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Cheng, Y. J.

Chi, G. C.

Chien, S. H.

Colsmann, A.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Connell, G. A.

Dai, B.

Ding, H.

Ding, X.

Ding, X. R.

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Ding, X.-R.

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Ding, Y.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Du, G.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Eom, S. H.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Fakhfouri, V.

Fang, C.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Fritz, B.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

Fu, T.

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Gomard, G.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Grutzner, G.

Guo, T.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Guo, X.

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Hetterich, M.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Hou, X.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Hu, R.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Huai, Z.

Huang, L. S.

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Huang, Y.

Huang, Y. P.

Hui, S. Y. R.

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

Hung, C. W.

Hünig, R.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Jay, T. R.

A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–3551 (1994).
[Crossref]

Jeong, K. H.

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Jiang, T.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Jung, H.

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Kim, J. Y.

Kuang, M.

M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
[Crossref] [PubMed]

Kuo, H. C.

Lee, A.

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

Lee, A. T. L.

A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
[Crossref]

Lee, C. Y.

Lei, L.

Lemmer, U.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Li, F.

Li, H.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Li, J.

Li, J. S.

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Li, J.-S.

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Li, M.

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Li, X.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

Li, Y.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Li, Z

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Li, Z.

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
[Crossref]

L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017).
[Crossref] [PubMed]

Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes,” Opt. Express 25(17), 20598–20611 (2017).
[Crossref] [PubMed]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42(23), 4962–4965 (2017).
[Crossref] [PubMed]

S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, “Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film,” Photon. Res. 4(4), 140 (2016).
[Crossref]

Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016).
[Crossref] [PubMed]

Li, Z. T.

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Li, Z.-T.

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Liang, G.

Liang, G.-W.

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

Liang, R.

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Lin, C. C.

Lin, C. H.

Lin, D. W.

Lin, H. Y.

Liu, C. Y.

Liu, H.

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Liu, J.

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

Liu, S.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Liu, Y.

Liu, Z.

Lu, B.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Lu, H.

Luo, X.

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Luo, X. B.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Mertens, A.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Mottier, P. L.

M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999).
[Crossref]

Mou, Y.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Myers, J. D.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Pai, Y. M.

Pang, A. J.

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

Peng, R.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Peng, Y.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo, “Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs,” Opt. Mater. Express 8(3), 605 (2018).
[Crossref]

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Popovic, Z. D.

Powalla, M.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Rao, L.

Rao, L. S.

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Rao, L.-S.

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

Richter, B.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Schmager, R.

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

Schulz, A.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Severi, M.

M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999).
[Crossref]

Shan, M.

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

Shao, J.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

Sheng, L.

Sher, C. W.

Shi, J. X.

Shih, M. H.

Shu, X.

Shudong, Y. U.

Si, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Sin, J. K. O.

A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
[Crossref]

Song, Y.

M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
[Crossref] [PubMed]

Sprague, R. A.

Stephan, M.

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

Stern, A. M. B.

A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–3551 (1994).
[Crossref]

Tan, J.

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

Tan, S. C.

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

Tang, X.

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Tang, Y.

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Y. U. Shudong, Y. Tang, L. I. Zongtao, K. Chen, X. Ding, and Y. U. Binhai, “Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites,” Photon. Res. 6(2), 90 (2018).
[Crossref]

S. Yu, B. Zhuang, J. Chen, Z. Li, L. Rao, B. Yu, and Y. Tang, “Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes,” Opt. Lett. 42(23), 4962–4965 (2017).
[Crossref] [PubMed]

L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017).
[Crossref] [PubMed]

Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes,” Opt. Express 25(17), 20598–20611 (2017).
[Crossref] [PubMed]

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
[Crossref]

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, “Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film,” Photon. Res. 4(4), 140 (2016).
[Crossref]

Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016).
[Crossref] [PubMed]

Tian, H.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

Vallet, M.

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[Crossref]

Vovelle, L.

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[Crossref]

Wang, C.

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

Wang, C. H.

Wang, H.

Wang, H. X.

Wang, J.

Wang, K.

Wang, L.

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
[Crossref] [PubMed]

Wang, W.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
[Crossref] [PubMed]

Wang, X. Z.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Wang, Y.

Wei, Y.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Wen, F.

Wen, K.

Weng, C. M.

Xiaobing, L.

Xie, D.

Xie, Y.

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Xu, Q.

Xu, X.

Xue, J.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yan, C.

Yan, C.-M.

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

Yang, B.

Yang, L.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yang, Q.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Yang, S. Y.

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Yang, Z.

Yeh, C. C.

Yetisen, A. K.

R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
[Crossref] [PubMed]

Yong, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

You, W.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yu, B.

Yu, B. H.

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

Yu, B.-H.

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

Yu, S.

Yu, S.-D.

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Yuan, W.

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

Yun, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zeng, J.

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

Zeng, X.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhang, D.

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zhang, J.

T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
[Crossref] [PubMed]

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

Zhang, M.

Zhang, Y.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Zhang, Y. A.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhao, C.

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

Zhao, X.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Zheng, J.

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

Zhou, J.

Zhou, R.

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Zhou, X.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhu, T. F.

Zhuang, B.

Zhuang, S.

Zhuo, Y.

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

Zongtao, L. I.

ACS Appl. Mater. Interfaces (5)

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” ACS Appl. Mater. Interfaces 10(26), 21950–21956 (2018).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

ACS Nano (1)

R. Ahmed, A. K. Yetisen, and H. Butt, “High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array,” ACS Nano 11(3), 3155–3165 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Peng, X. Guo, R. Liang, Y. Mou, H. Cheng, M. Chen, and S. Liu, “Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs,” ACS Photonics 4(10), 2479–2485 (2017).
[Crossref]

Adv. Funct. Mater. (1)

X. Li, H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang, and B. Lu, “Decreasing the Saturated Contact Angle in Electrowetting-on-Dielectrics by Controlling the Charge Trapping at Liquid-Solid Interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Adv. Mater. (1)

M. Kuang, L. Wang, and Y. Song, “Controllable printing droplets for high-resolution patterns,” Adv. Mater. 26(40), 6950–6958 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

R. Hünig, A. Mertens, M. Stephan, A. Schulz, B. Richter, M. Hetterich, M. Powalla, U. Lemmer, A. Colsmann, and G. Gomard, “Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin‐Film Solar Cells,” Adv. Opt. Mater. 4(10), 1487–1493 (2016).
[Crossref]

App. Thermal Engin. (1)

X. Ding, M. Li, Z Li, Y. Tang, Y. Xie, X. Tang, and T. Fu," Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe," App. Thermal Engin. 148, 1099-1106 (2019).

Appl. Opt. (2)

Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
[Crossref] [PubMed]

J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 48, 340–345 (2008).
[PubMed]

Bioinspir. Biomim. (1)

B. Fritz, R. Hünig, R. Schmager, M. Hetterich, U. Lemmer, and G. Gomard, “Assessing the influence of structural disorder on the plant epidermal cells’ optical properties: a numerical analysis,” Bioinspir. Biomim. 12(3), 036011 (2017).
[Crossref] [PubMed]

Electrophoresis (1)

H. Tian, J. Shao, Y. Ding, X. Li, and X. Li, “Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow,” Electrophoresis 32(17), 2245–2252 (2011).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

J. D. Myers, W. Cao, V. Cassidy, S. H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J.-S. Li, C.-M. Yan, Z.-T. Li, G.-W. Liang, Y. Tang, and B.-H. Yu, “Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method,” IEEE Photonics Technol. Lett. 29(23), 2079–2082 (2017).
[Crossref]

IEEE Trans. Compon. Packag. Tech. (1)

J. Zhang, C. Wang, J. Zeng, and A. J. Pang, “A Low Cost Bumping Method for Flip Chip Assembly and MEMS Integration,” IEEE Trans. Compon. Packag. Tech. 30(4), 781–786 (2007).
[Crossref]

IEEE Trans. Electron Dev. (1)

Y. Tang, Z. Li, Z.-T. Li, J.-S. Li, S.-D. Yu, and L.-S. Rao, “Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles,” IEEE Trans. Electron Dev. 65(1), 158–164 (2018).
[Crossref]

IEEE Trans. Electron. Dev. (1)

J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, L. S. Rao, and B. H. Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes,” IEEE Trans. Electron. Dev. 65, 2877–2884 (2018).

IEEE Trans. Power Electron. (2)

A. Lee, H. Chen, S. C. Tan, and S. Y. R. Hui, “Precise Dimming and Color Control of Light-Emitting Diode Systems based on Color Mixing,” IEEE Trans. Power Electron. 2015, 1 (2015).
[Crossref]

A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron. 29(1), 501–513 (2014).
[Crossref]

Infrared Phys. Technol. (1)

C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

J. Alloy. Compd. (1)

Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Z. Wang, M. X. Chen, and X. B. Luo, "Preparation and luminescent performances of thermally stable redemitting phosphor-in-glass for high-power lighting," J. Alloy. Compd. 768, 114-121 (2018).
[Crossref]

J. Disp. Technol. (1)

J.-S. Li, Y.-H. Chen, Z.-T. Li, S.-D. Yu, Y. Tang, X.-R. Ding, and W. Yuan, “ACU Optimization of pc LEDs by Combining the Pulsed Spray and Feedback Method,” J. Disp. Technol. 12(10), 1229–1234 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

X. Li, J. Shao, H. Tian, Y. Ding, and X. Li, “Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting,” J. Micromech. Microeng. 21(6), 065010 (2011).
[Crossref]

Langmuir (1)

X. Li, H. Tian, J. Shao, Y. Ding, and H. Liu, “Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights,” Langmuir 29(5), 1351–1355 (2013).
[Crossref] [PubMed]

Opt. Eng. (3)

S. Yu, Y. Tang, Z. Li, Y. Chen, B. Yu, and G. Liang, “Freeform illumination lens design combining energy and intensity mapping,” Opt. Eng. 56(4), 045101 (2017).
[Crossref]

M. Severi and P. L. Mottier, “Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations,” Opt. Eng. 38(1), 146–150 (1999).
[Crossref]

A. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33(11), 3547–3551 (1994).
[Crossref]

Opt. Express (10)

C. Y. Liu, K. J. Chen, D. W. Lin, C. Y. Lee, C. C. Lin, S. H. Chien, M. H. Shih, G. C. Chi, C. Y. Chang, and H. C. Kuo, “Improvement of emission uniformity by using micro-cone patterned PDMS film,” Opt. Express 22(4), 4516–4522 (2014).
[Crossref] [PubMed]

L. Rao, Y. Tang, Z. Li, X. Ding, J. Li, S. Yu, C. Yan, and H. Lu, “Effect of ZnO nanostructures on the optical properties of white light-emitting diodes,” Opt. Express 25(8), A432–A443 (2017).
[Crossref] [PubMed]

Q. Chen, Z. Li, K. Chen, Y. Tang, X. Ding, and B. Yu, “CCT-tunable LED device with excellent ACU by using micro-structure array film,” Opt. Express 24(15), 16695–16704 (2016).
[Crossref] [PubMed]

D. Xie, X. Chang, X. Shu, Y. Wang, H. Ding, and Y. Liu, “Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology,” Opt. Express 23(4), 5154–5166 (2015).
[Crossref] [PubMed]

T. F. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. X. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
[Crossref] [PubMed]

H. Y. Lin, Y. M. Pai, J. X. Shi, X. Y. Chen, C. H. Lin, C. M. Weng, T. Y. Chen, C. C. Lin, M. D. B. Charlton, Y. P. Huang, C. H. Chen, H. P. Chen, and H. C. Kuo, “Optimization of nano-honeycomb structures for flexible w-LEDs,” Opt. Express 25(17), 20466–20476 (2017).
[Crossref] [PubMed]

Y. Tang, G. Liang, J. Chen, S. Yu, Z. Li, L. Rao, and B. Yu, “Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes,” Opt. Express 25(17), 20598–20611 (2017).
[Crossref] [PubMed]

H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express 19(S4Suppl 4), A930–A936 (2011).
[Crossref] [PubMed]

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref] [PubMed]

B. Yang, J. Zhou, Q. Chen, L. Lei, and K. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (2)

Photon. Res. (2)

Polymer (Guildf.) (1)

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[Crossref]

Pror. Energy Combust. Sci. (1)

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Pror. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Other (4)

X. J. Shen and L. Lin, Micro Plastic Embossing Process: Experimental and Theoretical Characterizations (Springer Berlin Heidelberg, 2001).

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv Mater 24, OP165–169, OP190 (2012).
[Crossref]

D. Jacqmin, Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling (Academic Press Professional, Inc., 1999).

C. Zhou, P. Yue, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu, “3D Phase-Field Simulations of Interfacial Dynamics in Viscoelastic Fluids with Adaptive Meshing,” in 61st Annual Meeting of the APS Division of Fluid Dynamics (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of concave MLA fabrication by the electrowetting process. (a) Coating of a polymer layer on the bottom transparent conductive oxide substrate and contact of the micro-patterned template onto the polymer layer with a certain pressure to confine the polymer in the micro-holes; (b) Application of a voltage between the template and the conductive substrate under controlled pressure; (c) UV irradiation from the transparent conductive oxide substrate side to cure the polymer; (d) Separation of the template from the cured polymer.
Fig. 2
Fig. 2 (a) Schematic illustration of the ray-optics simulations framework. Parallel light is incident to the patterned side of the MLA films, and the transmitted light is captured by a hemispherical detector. (b) Simulated unit cell of the concave MLA with hexagonal arrangement (left), and corresponding scanning electron microscope image of the fabricated MLA at a tilt angle of 45°(right).
Fig. 3
Fig. 3 (a) Photograph of CCT-tunable chip on board LED. (b) CCT-tunable LED mounted with aluminum fins. (c) Schematic diagram of CCT-tunable LED lamp packaged with MLA film. (d) Image of home-made CCT distribution measurement system.
Fig. 4
Fig. 4 (a) MLA film surface contour at different constant voltages. (b) MLA surface contour for different square wave frequencies at 120 V (c) MLA surface contour for different square wave voltages at 5 Hz. (d) Photographs (left) and scanning electron microscope images (right, taken under 45° tilt angle) of the S-0 and S-180 films. The size of the patterned area is 20 mm × 20 mm. (e) Simulated DEP force distribution along the meniscus polymer surface for different applied voltages. The insets show the initial state (left) and the final state (right) of the polymer meniscus at 180 V.
Fig. 5
Fig. 5 (a) Overall transmittance and (b) haze (in transmission) spectra of the smooth film plotted together with the spectra of the S-0, S-60, S-120 and S-180 films. (c) Far-field transmission pattern of a 650 nm laser beam irradiating the S-180 film. (d) Simulated angular distribution of the transmitted light rays based on the measured morphologies obtained at different voltages.
Fig. 6
Fig. 6 (a) Schematic of the light distribution in a CCT-tunable LED lamp. (b) Angle-dependent CCT distribution of the lamps covered with the smooth film and with the MLA films. The insets show the photographs of the light spots obtained with a CCT-tunable LED with smooth film (left) and with the S-180V film (right). (c) Emission spectra of different films at the zenith angles of 65°. (d) Emission spectra of the corresponding samples measured with an integrating sphere.

Tables (1)

Tables Icon

Table 1 Correlated color temperature deviation (ΔCCT) and luminous flux of CCT-tunable LED covered with a smooth film and with the S-180V film for different CCT ranges. The uncertainties of the CCT deviation and luminous flux data were derived out of 3 and 5 measurements, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ ρ u t +ρ u · u =p+h 2 u + 1 3 h( · u )+ f e +ρg ρ t +( ρ u )=0
f e = 1 2 E 2 ε

Metrics