Abstract

Multi-spectral quantitative phase imaging (QPI) is an emerging imaging modality for wavelength dependent studies of several biological and industrial specimens. Simultaneous multi-spectral QPI is generally performed with color CCD cameras. Here, we present a new approach for accurately measuring the color crosstalk of 2D area detectors, without needing prior information about camera specifications. Color crosstalk is systematically studied and compared using compact interference microscopy on two different cameras commonly used in QPI, single chip CCD (1-CCD) and three chip CCD (3-CCD). The influence of color crosstalk on the fringe width and the visibility of the monochromatic constituents corresponding to three color channels of white light interferogram are studied both through simulations and experiments. It is observed that presence of color crosstalk changes the fringe width and visibility over the imaging field of view. This leads to an unwanted non-uniform background error in the multi-spectral phase imaging of the specimens. The color crosstalk of the detector is observed to be the limiting factor for phase measurement accuracy of simultaneous multi-spectral QPI systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection

Zonghua Zhang, Catherine E. Towers, and David P. Towers
Opt. Express 14(14) 6444-6455 (2006)

Measurement of large discontinuities using single white light interferogram

Paul Kumar Upputuri, Li Gong, Haifeng Wang, Manojit Pramanik, Krishna Mohan Nandigana, and Mahendra Prasad Kothiyal
Opt. Express 22(22) 27373-27380 (2014)

Color-image reconstruction for two-wavelength digital holography using a generalized phase-shifting approach

Takaaki Shiratori, Keisuke Kasai, and Nobukazu Yoshikawa
Appl. Opt. 56(23) 6554-6563 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref] [PubMed]
  2. B. E. Bayer, “Color imaging array,” (Google Patents, 1976).
  3. R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005).
    [Crossref]
  4. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
    [Crossref]
  5. Y. S. Kang, “Color interpolation algorithm,” (Google Patents, 2010).
  6. J. E. Adams, “Design of practical color filter array interpolation algorithms for digital cameras,” in International Conference on Image Processing, (IEEE, 1998), 488–492.
    [Crossref]
  7. “ https://www.lumenera.com/infinity2-1r.html ”, retrieved.
  8. P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
    [Crossref]
  9. “ https://www.jai.com/products/at-140-ge ”, retrieved.
  10. C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)
  11. M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
    [Crossref]
  12. U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
    [Crossref]
  13. D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101(20), 203701 (2012).
    [Crossref]
  14. V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” in Quantitative Phase Imaging II, (Proc. SPIE, 2016), 97181F–97181.
  15. V. Dubey, G. Singh, V. Singh, A. Ahmad, and D. S. Mehta, “Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs,” Appl. Opt. 55(10), 2521–2525 (2016).
    [Crossref] [PubMed]
  16. A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
    [Crossref]
  17. P. de Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe2009:6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 236–243.
    [Crossref]
  18. P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42(2), 389–401 (1995).
    [Crossref]
  19. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  20. F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
    [Crossref] [PubMed]
  21. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
    [Crossref] [PubMed]
  22. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [Crossref] [PubMed]
  23. A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41(7), 1554–1557 (2016).
    [Crossref] [PubMed]
  24. M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
    [Crossref]
  25. A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
    [Crossref]
  26. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
    [Crossref]
  27. G. Wyszecki and W. S. Stiles, Color science (Wiley New York, 1982), Vol. 8.
  28. “ http://hamamatsu.magnet.fsu.edu/articles/microscopyimaging.html ”, retrieved.
  29. E. Min, S. Ban, Y. Wang, S. C. Bae, G. Popescu, C. Best-Popescu, and W. Jung, “Measurement of multispectral scattering properties in mouse brain tissue,” Biomed. Opt. Express 8(3), 1763–1770 (2017).
    [Crossref] [PubMed]
  30. A. R. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A. Robbins, and L. Tarassenko, “Non-contact measurement of oxygen saturation with an RGB camera,” Biomed. Opt. Express 6(9), 3320–3338 (2015).
    [Crossref] [PubMed]
  31. G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
    [Crossref]

2018 (1)

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

2017 (1)

2016 (4)

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

V. Dubey, G. Singh, V. Singh, A. Ahmad, and D. S. Mehta, “Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs,” Appl. Opt. 55(10), 2521–2525 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41(7), 1554–1557 (2016).
[Crossref] [PubMed]

2015 (3)

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

A. R. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A. Robbins, and L. Tarassenko, “Non-contact measurement of oxygen saturation with an RGB camera,” Biomed. Opt. Express 6(9), 3320–3338 (2015).
[Crossref] [PubMed]

2014 (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

2012 (3)

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101(20), 203701 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

2009 (1)

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

2008 (1)

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

2006 (1)

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

2005 (1)

R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005).
[Crossref]

2003 (1)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

1995 (1)

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42(2), 389–401 (1995).
[Crossref]

1987 (1)

Adams, J. E.

J. E. Adams, “Design of practical color filter array interpolation algorithms for digital cameras,” in International Conference on Image Processing, (IEEE, 1998), 488–492.
[Crossref]

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Ahluwalia, B. S.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Ahmad, A.

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

V. Dubey, G. Singh, V. Singh, A. Ahmad, and D. S. Mehta, “Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs,” Appl. Opt. 55(10), 2521–2525 (2016).
[Crossref] [PubMed]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41(7), 1554–1557 (2016).
[Crossref] [PubMed]

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

Arridge, S.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Bae, S. C.

Ban, S.

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Best-Popescu, C.

Bhaduri, B.

Butola, A.

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

Chao, C.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Chou, K.-Y.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Chou, P.-S.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Clancy, N. T.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Crafton, J.

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Daly, J.

de Groot, P.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42(2), 389–401 (1995).
[Crossref]

Deck, L.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42(2), 389–401 (1995).
[Crossref]

Dubey, V.

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

V. Dubey, G. Singh, V. Singh, A. Ahmad, and D. S. Mehta, “Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs,” Appl. Opt. 55(10), 2521–2525 (2016).
[Crossref] [PubMed]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41(7), 1554–1557 (2016).
[Crossref] [PubMed]

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

Eiju, T.

El-Naggar, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Elson, D. S.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Fontaine, A.

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Frise, M. C.

Gillenwater, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Goss, L.

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Guazzi, A. R.

Haifeng, W.

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

Hariharan, P.

Hellso, O. G.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Hseih, B.-C.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Hsueh, F.-L.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Jones, G.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Jorge, J.

Jung, W.

Kothiyal, M.

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

Kothiyal, M. P.

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

Krane, M.

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Kumar, U. P.

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

Li, W. J.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Lin, R.-J.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Liu, L.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Liu, Z.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Lukac, R.

R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005).
[Crossref]

McPhail, M.

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Mehta, D.

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

Mehta, D. S.

Min, E.

Mir, M.

Miyamoto, Y.

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

Mohan, N. K.

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

Nandigana, K. M.

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

Oreb, B. F.

Pavlova, I.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Pawlowski, M. E.

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

Perney, N. M.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Pham, H.

Plataniotis, K. N.

R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005).
[Crossref]

Popescu, G.

Pramanik, M.

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

Richards-Kortum, R.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Robbins, P. A.

Sakano, Y.

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

Senthilkumaran, P.

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

Sessions, N. P.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Singh, G.

Singh, V.

Singh Mehta, D.

D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101(20), 203701 (2012).
[Crossref]

Srivastava, V.

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101(20), 203701 (2012).
[Crossref]

Stoyanov, D.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Subramanian, A. Z.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Takeda, M.

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

Tarassenko, L.

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Tu, H.-Y.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Upputuri, P. K.

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

Villarroel, M.

Wang, F.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Wang, Y.

E. Min, S. Ban, Y. Wang, S. C. Bae, G. Popescu, C. Best-Popescu, and W. Jung, “Measurement of multispectral scattering properties in mouse brain tissue,” Biomed. Opt. Express 8(3), 1763–1770 (2017).
[Crossref] [PubMed]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Wei, V.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

Wilkinson, J. S.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

Williams, M.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Yu, H.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Yu, P.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. Ahmad, V. Srivastava, V. Dubey, and D. Mehta, “Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity,” Appl. Phys. Lett. 106(9), 093701 (2015).
[Crossref]

D. Singh Mehta and V. Srivastava, “Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis,” Appl. Phys. Lett. 101(20), 203701 (2012).
[Crossref]

Biomed. Opt. Express (2)

Clin. Cancer Res. (1)

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photonics Technol. Lett. 21(19), 1408–1410 (2009).
[Crossref]

IEEE Trans. Consum. Electron. (1)

R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Trans. Consum. Electron. 51(4), 1260–1267 (2005).
[Crossref]

IEEE Trans. Electron Dev. (1)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

J. Mod. Opt. (1)

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42(2), 389–401 (1995).
[Crossref]

Laser Phys. Lett. (1)

A. Butola, A. Ahmad, V. Dubey, P. Senthilkumaran, and D. S. Mehta, “Spectrally resolved laser interference microscopy,” Laser Phys. Lett. 15(7), 075602 (2018).
[Crossref]

Meas. Sci. Technol. (1)

M. McPhail, A. Fontaine, M. Krane, L. Goss, and J. Crafton, “Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry,” Meas. Sci. Technol. 26(2), 025302 (2015).
[Crossref]

Opt. Commun. (1)

M. E. Pawłowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260(1), 68–72 (2006).
[Crossref]

Opt. Lasers Eng. (2)

U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, “White light interferometry for surface profiling with a colour CCD,” Opt. Lasers Eng. 50(8), 1084–1088 (2012).
[Crossref]

P. K. Upputuri, M. Pramanik, K. M. Nandigana, and M. P. Kothiyal, “Multi-colour microscopic interferometry for optical metrology and imaging applications,” Opt. Lasers Eng. 84, 10–25 (2016).
[Crossref]

Opt. Lett. (2)

Sci. Rep. (1)

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Other (11)

P. de Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” in Fringe2009:6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 236–243.
[Crossref]

V. Dubey, V. Singh, A. Ahmad, G. Singh, and D. S. Mehta, “White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water,” in Quantitative Phase Imaging II, (Proc. SPIE, 2016), 97181F–97181.

“ https://www.jai.com/products/at-140-ge ”, retrieved.

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin, and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop, 2011)

B. E. Bayer, “Color imaging array,” (Google Patents, 1976).

Y. S. Kang, “Color interpolation algorithm,” (Google Patents, 2010).

J. E. Adams, “Design of practical color filter array interpolation algorithms for digital cameras,” in International Conference on Image Processing, (IEEE, 1998), 488–492.
[Crossref]

“ https://www.lumenera.com/infinity2-1r.html ”, retrieved.

G. Wyszecki and W. S. Stiles, Color science (Wiley New York, 1982), Vol. 8.

“ http://hamamatsu.magnet.fsu.edu/articles/microscopyimaging.html ”, retrieved.

G. Jones, N. T. Clancy, S. Arridge, D. S. Elson, and D. Stoyanov, “Inference of tissue haemoglobin concentration from Stereo RGB,” in International Conference on Medical Imaging and Virtual Reality, (Springer, 2016), 50–58.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of WLIM setup. L1, L2 and L3: lenses; BS: beam splitter; A-stop: aperture stop; F-stop: field stop; BF: bandpass filter; PZT: piezo electric transducer and CCD: charge coupled device. (b) Optical rib waveguide of height ‘h’.
Fig. 2
Fig. 2 Investigation of color crosstalk of 1-CCD and 3-CCD cameras obtained from the direct measurement of signal intensities at different color channels when three different bandpass color filters are sequentially inserted into the white light beam path. (a – c) Line profiles corresponding to RGB color channels/bands of the bright field images recorded by 1-CCD camera corresponding to 620, 532, and 460nm bandpass filters, respectively. (d – f) Line profiles corresponding to RGB color channels/bands of the bright field images recorded by 3-CCD camera corresponding to 620, 532, and 460nm bandpass filters, respectively. The insets of Fig. 2 are the bright field images recorded by 1-CCD and 3-CCD camera. The line profiles are plotted along white dotted lines depicted in the bright field images.
Fig. 3
Fig. 3 Investigation of color crosstalk of 1-CCD and 3-CCD cameras obtained from the interferometric measurement of signal intensities at different color channels when three different bandpass color filters are sequentially inserted into the white light beam path. (a – c) Normalized intensity line profiles of RGB color channels/bands of the interferometric images recorded by 1-CCD camera corresponding to 620, 532, and 460nm bandpass filters, respectively. (d – f) Normalized intensity line profiles of RGB color channels/bands of the interferometric images recorded by 3-CCD camera corresponding to 620, 532, and 460nm bandpass filters, respectively. The insets of Fig. 3 are the interferometric images recorded by 1-CCD and 3-CCD camera. The normalized intensity line profiles are plotted along white dotted lines depicted in the interferometric images. The intensity of RGB color channels of each interferometric image is normalized with respect to the maximum intensity of a color channel corresponding to a particular bandpass filter.
Fig. 4
Fig. 4 Flowchart for the measurement of color crosstalk.
Fig. 5
Fig. 5 Influence of color crosstalk on the fringe visibility and fringe width of interferogram. (a, d) Interferograms corresponding to 460 nm wavelength without and with crosstalk. (b, e) Corresponding line profiles along blue dotted horizontal lines with visibility profile shown in solid green color lines. (c, f) Representations of equal and spatially varying fringe width of interferograms in the absence and presence of crosstalk, respectively.
Fig. 6
Fig. 6 Influence of color crosstalk on Multispectral QPI. (a – c) One of the five phase shifted interferogram corresponding to red, green and blue color channels in the presence of 10% crosstalk due to the respective other two channels. (d – f) Recovered phase maps of simulated phase object for red, green and blue color channels, respectively. (g – i) Line profiles plotted along the red dotted line shown in Fig. 6(d) – 6(f). The colorbar is in rad.
Fig. 7
Fig. 7 Effect of color crosstalk of 1-CCD and 3-CCD camera on the fringe visibility. The narrow bandpass color filters are not used into the white light beam path for the recording of color interferograms. Black color lines represent the visibility curve profiles of the monochromatic (RGB) constitutions of white light interferograms for both 1- CCD and 3-CCD.
Fig. 8
Fig. 8 Multispectral quantitative phase imaging of rib waveguide recovered from white light interferogram recorded with 1-CCD and 3-CCD camera, respectively. (a-c) Recovered pseudo 3D phase map of rib waveguide obtained from RGB color channels 1-CCD camera, (d-f) corresponding line profiles along black dotted horizontal lines illustrating non-uniform background and green dotted vertical lines depicting the inverse phase profiles of rib waveguide. (g-i) Recovered pseudo 3D phase map of rib waveguide obtained from RGB color channels 3-CCD camera, (j-l) corresponding line profiles along black dotted horizontal lines illustrating absence of non-uniform background and green dotted vertical lines depicting the inverse phase profiles of rib waveguide. The color bars represent phase in rad.

Tables (5)

Tables Icon

Table 1 Peak to valley intensity value generated in RGB color channels of 1-CCD and 3-CCD cameras when three different bandpass color filters having ~40nm bandwidth each at 460, 532, and 620nm central wavelengths are sequentially inserted into the white light beam path.

Tables Icon

Table 2 Comparison of color crosstalk present in RGB channels of 1-CCD and 3-CCD camera.

Tables Icon

Table 3 Signal to Noise ratio (S/N) of RGB channels of 1-CCD and 3-CCD camera under different color crosstalk noise levels.

Tables Icon

Table 4 Root mean square error (RMSE) in the RGB recovered phase maps of the simulated object in the presence of color crosstalk.

Tables Icon

Table 5 Multispectral phase measurements of rib waveguide while employing 1-CCD and 3-CCD camera for white light interferometric recording.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I R i (x,y)=A(x,y)+B(x,y)cos[ φ R (x,y)+(i3) δ R ]
φ R (x,y)= tan 1 [ sin δ R 2( I 4 (x,y) I 2 (x,y)) I 1 (x,y)2 I 3 (x,y)+ I 5 (x,y) ]
I R i (x,y)={ A R S (x,y)+ B R S (x,y)cos[ φ R S (x,y)+(i3) δ R ]} +{ A G n (x,y)+ B G n (x,y)cos[ φ G n (x,y)+(i3) δ G ]} +{ A B n (x,y)+ B B n (x,y)cos[ φ B n (x,y)+(i3) δ B ]}
φ R S (x,y)= tan 1 [ 2sin δ R {( I 4 (x,y) I 2 (x,y))Nu m G,B crosstalk } { ( I 1 (x,y)2 I 3 (x,y)+ I 5 (x,y))De n G,B crosstalk } ]
Nu m G,B crosstalk =2{ B G n (x,y)sin( φ G n (x,y))sin δ G + B B n (x,y)sin( φ B n (x,y))sin δ B }
De n G,B crosstalk =4{ B G n (x,y)cos( φ G n (x,y) ) sin 2 δ G + B B n (x,y)cos( φ B n (x,y) ) sin 2 δ B }
φ G S (x,y)= tan 1 [ 2sin δ G { ( I 4 (x,y) I 2 (x,y) )Nu m B,R crosstalk } { ( I 1 (x,y)2 I 3 (x,y)+ I 5 (x,y) )De n B,R crosstalk } ]
φ B S (x,y)= tan 1 [ 2sin δ B { ( I 4 (x,y) I 2 (x,y) )Nu m R,G crosstalk } { ( I 1 (x,y)2 I 3 (x,y)+ I 5 (x,y) )De n R,G crosstalk } ]
Nu m B,R crosstalk =2{ B B n (x,y)sin( φ B n (x,y) )sin δ B + B R n (x,y)sin( φ R n (x,y) )sin δ R }
De n B,R crosstalk =4{ B B n (x,y)cos( φ B n (x,y) ) sin 2 δ B + B R n (x,y)cos( φ R n (x,y) ) sin 2 δ R }
Nu m R,G crosstalk =2{ B R n (x,y)sin( φ R n (x,y) )sin δ R + B G n (x,y)sin( φ G n (x,y) )sin δ G }
De n R,G crosstalk =4{ B R n (x,y)cos( φ R n (x,y) ) sin 2 δ R + B G n (x,y)cos( φ G n (x,y) ) sin 2 δ G }
δ R = λ R λ G π 2 ;
δ B = λ B λ G π 2 ;
SN R channelR,G,B (db)=20log( signa l channelR,G,B nois e crosstalk )

Metrics