Abstract

A compressive imaging spectropolarimeter is proposed in this paper, capable of simultaneously acquiring full polarization, spatial and spectral information of the object scene. The spectral and polarization information is modulated through a combination of high-order retarders, a dispersion prism and a polarizer filter wheel. Using a random coded aperture, compressive sensing is applied to eliminate the channel crosstalk and resolution limitation of traditional channeled spectropolarimeters. The forward sensing model and inverse problem are developed. Computer simulation results are reported, followed by experimental demonstrations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fourier transform channeled spectropolarimetry in the MWIR

Michael W. Kudenov, Nathan A. Hagen, Eustace L. Dereniak, and Grant R. Gerhart
Opt. Express 15(20) 12792-12805 (2007)

High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope

Chunmin Zhang, Qiwei Li, Tingyu Yan, Tingkui Mu, and Yutong Wei
Opt. Express 24(20) 23314-23332 (2016)

Tests of a compact static Fourier-transform imaging spectropolarimeter

Jie Li, Bo Gao, Chun Qi, Jingping Zhu, and Xun Hou
Opt. Express 22(11) 13014-13021 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
    [Crossref] [PubMed]
  2. J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
    [Crossref]
  3. L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Physics Reports 616, 1–37 (2016).
    [Crossref] [PubMed]
  4. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Optics Letters 24, 1475–1477 (1999).
    [Crossref]
  5. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
    [Crossref] [PubMed]
  6. V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
    [Crossref]
  7. T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).
  8. D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
    [Crossref]
  9. R. T. Kester and T. S. Tkaczyk, “Image mapped spectropolarimetry,” US Patent9,239,26319January (2016).
  10. T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Applied Optics 52, 2153–2161 (2013).
    [Crossref] [PubMed]
  11. A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).
  12. E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).
  13. N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
    [Crossref] [PubMed]
  14. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine 25, 21–30 (2008).
    [Crossref]
  15. X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
    [Crossref] [PubMed]
  16. X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
    [Crossref] [PubMed]
  17. X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
    [Crossref] [PubMed]
  18. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
    [Crossref] [PubMed]
  19. D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).
  20. D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
    [Crossref] [PubMed]
  21. F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
    [Crossref]
  22. T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
    [Crossref] [PubMed]
  23. C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).
  24. C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
    [Crossref]
  25. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
    [Crossref]
  26. W. Ren, C. Fu, and G. R. Arce, “The first result of compressed channeled imaging spectropolarimeter,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, (Optical Society of America, 2018), pp. JTu4A.
  27. M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
    [Crossref]
  28. J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing 16, 2992–3004 (2007).
    [Crossref] [PubMed]
  29. D. H. Goldstein, Polarized Light, 3rd Edition (CRC, 2003).
    [Crossref]
  30. G. W. Kattawar, “A search for circular polarization in nature,” Optics and Photonics News 5, 42–43 (1994).
    [Crossref]
  31. M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
    [Crossref] [PubMed]
  32. J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
    [Crossref]
  33. Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,” Electronics Letters 44, 800–801 (2008).
    [Crossref]
  34. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
    [Crossref] [PubMed]
  35. A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
    [Crossref] [PubMed]
  36. B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
    [Crossref] [PubMed]
  37. X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
    [Crossref] [PubMed]
  38. F. W. King, Hilbert transforms, vol. 1 (Cambridge University, 2009).
  39. J. Novak, “Computer analysis of interference fields using matlab,” in MATLAB conference, (2002), pp. 406–410.

2018 (2)

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

2017 (4)

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

2016 (3)

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Physics Reports 616, 1–37 (2016).
[Crossref] [PubMed]

2015 (2)

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
[Crossref] [PubMed]

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

2014 (4)

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

2013 (3)

T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Applied Optics 52, 2153–2161 (2013).
[Crossref] [PubMed]

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

2012 (1)

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

2011 (1)

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

2010 (1)

M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
[Crossref] [PubMed]

2009 (1)

E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).

2008 (3)

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine 25, 21–30 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,” Electronics Letters 44, 800–801 (2008).
[Crossref]

2007 (3)

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing 16, 2992–3004 (2007).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

2006 (2)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

2003 (1)

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

2002 (1)

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

1999 (1)

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Optics Letters 24, 1475–1477 (1999).
[Crossref]

1994 (1)

G. W. Kattawar, “A search for circular polarization in nature,” Optics and Photonics News 5, 42–43 (1994).
[Crossref]

Afonso, M. V.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
[Crossref] [PubMed]

Arce, G. R.

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

W. Ren, C. Fu, and G. R. Arce, “The first result of compressed channeled imaging spectropolarimeter,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, (Optical Society of America, 2018), pp. JTu4A.

Arguello, H.

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

Baron, D.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

Bioucas-Dias, J. M.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
[Crossref] [PubMed]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing 16, 2992–3004 (2007).
[Crossref] [PubMed]

Brady, D.

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

Brady, D. J.

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
[Crossref] [PubMed]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Applied Optics 52, 2153–2161 (2013).
[Crossref] [PubMed]

Candès, E. J.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine 25, 21–30 (2008).
[Crossref]

Carin, L.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

Chan, V. C.

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

Chen, Q.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

Clemente, P.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Craven, J. M.

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
[Crossref] [PubMed]

Craven, M.

E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).

Craven-Jones, J.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

Dereniak, E.

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

Dereniak, E. L.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Descour, M. R.

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Dong, L.

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

Duan, J.

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

Durán, V.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Fernández-Alonso, M.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Figueiredo, M. A.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
[Crossref] [PubMed]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing 16, 2992–3004 (2007).
[Crossref] [PubMed]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
[Crossref]

Fu, C.

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

W. Ren, C. Fu, and G. R. Arce, “The first result of compressed channeled imaging spectropolarimeter,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, (Optical Society of America, 2018), pp. JTu4A.

Fu, Q.

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

Gao, L.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Physics Reports 616, 1–37 (2016).
[Crossref] [PubMed]

Gao, L. S.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

Garcia, J. P.

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Garcia-Frias, J.

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

Gerhart, G. R.

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

Ghanbari, M.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,” Electronics Letters 44, 800–801 (2008).
[Crossref]

Goldstein, D. H.

D. H. Goldstein, Polarized Light, 3rd Edition (CRC, 2003).
[Crossref]

Goldstein, D. L.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

Hagen, N. A.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

Hamilton, T. K.

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Hayakawa, M.

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

Huynh-Thu, Q.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,” Electronics Letters 44, 800–801 (2008).
[Crossref]

Irles, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Jia, C.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

John, R.

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

Ju, X.

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

Julia, E. L. D.

E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).

Kato, T.

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Optics Letters 24, 1475–1477 (1999).
[Crossref]

Kattawar, G. W.

G. W. Kattawar, “A search for circular polarization in nature,” Optics and Photonics News 5, 42–43 (1994).
[Crossref]

Kester, R. T.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

R. T. Kester and T. S. Tkaczyk, “Image mapped spectropolarimetry,” US Patent9,239,26319January (2016).

King, F. W.

F. W. King, Hilbert transforms, vol. 1 (Cambridge University, 2009).

Kittle, D. S.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

Kudenov, M.

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

Kudenov, M. W.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

Kudenov, Michael W.

E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).

LaCasse, C. F.

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
[Crossref] [PubMed]

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).

Lancis, J.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Lee, D. J.

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
[Crossref] [PubMed]

Li, Q.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

Li, Y.

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

Liang, C.

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

Lin, H.

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

Liu, D.

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

Locke, A. M.

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Lorenz, V. O.

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

Ma, X.

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

Ma, Y.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

McMillan, R. W.

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Mo, C.

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

Mu, T.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

Novak, J.

J. Novak, “Computer analysis of interference fields using matlab,” in MATLAB conference, (2002), pp. 406–410.

Nowak, R. D.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
[Crossref]

Oka, K.

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Optics Letters 24, 1475–1477 (1999).
[Crossref]

Okabe, H.

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

Ren, W.

W. Ren, C. Fu, and G. R. Arce, “The first result of compressed channeled imaging spectropolarimeter,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, (Optical Society of America, 2018), pp. JTu4A.

Rueda, H.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

Sabatke, D. S.

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Sadler, B. M.

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

Salyer, D.

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

Shaw, J. A.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

Shi, D.

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

Soldevila, F.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Stapelbroek, M. G.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

Tajahuerce, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Tan, J.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

Taniguchi, A.

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

Tkaczyk, T. S.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

R. T. Kester and T. S. Tkaczyk, “Image mapped spectropolarimetry,” US Patent9,239,26319January (2016).

Tsai, T.-H.

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
[Crossref] [PubMed]

T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Applied Optics 52, 2153–2161 (2013).
[Crossref] [PubMed]

Tyo, J. S.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

Wagadarikar, A.

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

Wakin, M. B.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine 25, 21–30 (2008).
[Crossref]

Wang, L. V.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Physics Reports 616, 1–37 (2016).
[Crossref] [PubMed]

Wang, Z.

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

Wei, Y.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

Willett, R.

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

Wright, S. J.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
[Crossref]

Yan, C.

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

Yang, B.

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

Yuan, X.

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
[Crossref] [PubMed]

Zhang, C.

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

Zhang, J.

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

Zhang, L.

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

Zhou, P.

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

Zhu, Y.

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

Applied Optics (5)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics 45, 5453–5469 (2006).
[Crossref] [PubMed]

T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization imaging,” Applied Optics 52, 2153–2161 (2013).
[Crossref] [PubMed]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Applied Optics 47, B44–B51 (2008).
[Crossref] [PubMed]

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Applied Optics 50, 1170–1185 (2011).
[Crossref] [PubMed]

X. Ju, B. Yang, J. Zhang, and C. Yan, “Reduction of the effects of angle errors for a channeled spectropolarimeter,” Applied Optics 56, 9156–9164 (2017).
[Crossref] [PubMed]

Applied Physics B (1)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Applied Physics B 113, 551–558 (2013).
[Crossref]

Electronics Letters (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,” Electronics Letters 44, 800–801 (2008).
[Crossref]

IEEE Journal of Selected Topics in Signal Processing (2)

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE Journal of Selected Topics in Signal Processing 10, 389–401 (2016).
[Crossref]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).
[Crossref]

IEEE Signal Processing Magazine (2)

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Processing Magazine 31, 105–115 (2014).
[Crossref]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine 25, 21–30 (2008).
[Crossref]

IEEE Transactions on Image Processing (2)

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing 16, 2992–3004 (2007).
[Crossref] [PubMed]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19, 2345–2356 (2010).
[Crossref] [PubMed]

Journal of the Optical Society of America A (1)

C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” Journal of the Optical Society of America A 32, 2178–2188 (2015).
[Crossref]

Optical Engineering (2)

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Optical Engineering 51, 111702 (2012).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, E. L. Dereniak, M. R. Descour, J. P. Garcia, T. K. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Optical Engineering 41, 1048–1055 (2002).
[Crossref]

Optics and Photonics News (1)

G. W. Kattawar, “A search for circular polarization in nature,” Optics and Photonics News 5, 42–43 (1994).
[Crossref]

Optics Express (7)

B. Yang, X. Ju, C. Yan, and J. Zhang, “Alignment errors calibration for a channeled spectropolarimeter,” Optics Express 24, 28923–28935 (2016).
[Crossref] [PubMed]

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Optics Express 25, 32041–32063 (2017).
[Crossref] [PubMed]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Optics Express 23, 11912–11926 (2015).
[Crossref] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the mwir,” Optics Express 15, 12792–12805 (2007).
[Crossref] [PubMed]

X. Ma, D. Shi, Z. Wang, Y. Li, and G. R. Arce, “Lithographic source optimization based on adaptive projection compressive sensing,” Optics Express 25, 7131–7149 (2017).
[Crossref] [PubMed]

X. Ma, Z. Wang, H. Lin, Y. Li, G. R. Arce, and L. Zhang, “Optimization of lithography source illumination arrays using diffraction subspaces,” Optics Express 26, 3738–3755 (2018).
[Crossref] [PubMed]

X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias, “Fast optical proximity correction method based on nonlinear compressive sensing,” Optics Express 26, 14479–14498 (2018).
[Crossref] [PubMed]

Optics Letters (2)

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Optics Letters 24, 1475–1477 (1999).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters 31, 3279–3281 (2006).
[Crossref] [PubMed]

Physics Reports (1)

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Physics Reports 616, 1–37 (2016).
[Crossref] [PubMed]

Proc. SPIE (7)

J. Duan, Q. Fu, C. Mo, Y. Zhu, and D. Liu, “Review of polarization imaging for international military application,” Proc. SPIE 8908, 890813 (2013).
[Crossref]

V. C. Chan, M. Kudenov, C. Liang, P. Zhou, and E. Dereniak, “Design and application of the snapshot hyperspectral imaging fourier transform (shift) spectropolarimeter for fluorescence imaging,” Proc. SPIE 8949, 894903 (2014).
[Crossref]

T. Mu, C. Zhang, Q. Li, Y. Wei, Q. Chen, and C. Jia, “Snapshot full-stokes imaging spectropolarimetry based on division-of-aperture polarimetry and integral-field spectroscopy,” Proc. SPIE 9298, 92980D (2014).

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled linear imaging polarimetry,” Proc. SPIE 10407, 104070D (2017).

A. M. Locke, D. Salyer, D. S. Sabatke, and E. L. Dereniak, “Design of a swir computed tomographic imaging channeled spectropolarimeter,” Proc. SPIE 5158, 507136 (2003).

E. L. D. Julia, M. Craven, and Michael W. Kudenov, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 7419 (2009).

C. Fu, H. Arguello, G. R. Arce, and V. O. Lorenz, “Compressive spectral polarization imaging,” Proc. SPIE 9109, 91090D (2014).

Other (5)

D. H. Goldstein, Polarized Light, 3rd Edition (CRC, 2003).
[Crossref]

W. Ren, C. Fu, and G. R. Arce, “The first result of compressed channeled imaging spectropolarimeter,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, (Optical Society of America, 2018), pp. JTu4A.

R. T. Kester and T. S. Tkaczyk, “Image mapped spectropolarimetry,” US Patent9,239,26319January (2016).

F. W. King, Hilbert transforms, vol. 1 (Cambridge University, 2009).

J. Novak, “Computer analysis of interference fields using matlab,” in MATLAB conference, (2002), pp. 406–410.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of CCISP. The four-dimensional information (x, y, λ, S) of the object is encoded in the spatial by the CA, and in the polarization domain by the module composed by PFW, retarders R1 and R2, and polarizer P1, respectively. The encoded datacube is dispersed by the DAP and finally projected on the focal length plane.
Fig. 2
Fig. 2 Data modulation flowchart of CCISP while PFW rotates to position 1.
Fig. 3
Fig. 3 Illustrative example of the measurement matrix H. Each line displays the measurement matrix while the PFW is rotated to certain position. The four columns denote the measurement matrices corresponding to the four Stokes parameters.
Fig. 4
Fig. 4 Simulated measurements and reconstructed results. (a-e) The measured images while the PFW is rotated to the positions 1 to 5; (f-i) the reconstructed results of S0, S1, S2, and S3.
Fig. 5
Fig. 5 Experimental prototype of CCISP developed at the computational imaging and spectroscopy laboratory at the University of Delaware.
Fig. 6
Fig. 6 Measured dispersion curve and selected central wavelengths. The red pentagrams, the black dot line, and the blue squares denoted curves represent the position varying with the original, fitted, and selected wavelengths, respectively.
Fig. 7
Fig. 7 Measured coded aperture image obtained while the wavelength is 636 nm.
Fig. 8
Fig. 8 Polarization calibration system. The combination of PBS and polarizer P1 is used to generate various polarized input light. A fiber spectrometer FS is utilized to detect the modulated spectral profile.
Fig. 9
Fig. 9 Retardation phase of the retarders. The red and black curves are the retrieved phases of R1 and R2 using the proposed methods. The blue and green curves are the ideal phases of R1 and R2 theoretically.
Fig. 10
Fig. 10 Target and measured images. (a) The target to be detected; (b-f) the measured images taken while PFW rotates to positions 1-5.
Fig. 11
Fig. 11 Reconstructed results. (a) The reconstructed S1; (b) the reconstructed spectral profiles; (c-f) the 3-D datacubes of S0, S1, S2, and S3.
Fig. 12
Fig. 12 2-D and 3-D images of AoP and DoP. (a) 2-D images of AoP; (b) 2-D images DoP; (c) 3-D DC images of AoP; (d) 3-D DC images of DoP.

Tables (2)

Tables Icon

Table 1 PSNR of reconstructed images.

Tables Icon

Table 2 Correlation coefficients between the reconstructed and FS obtained parameters.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S M = M P 1 M R 2 M R 1 M P F W S = Γ S ,
Γ = 1 2 [ 1 cos  ϕ 2 sin  ϕ 1 sin  ϕ 2 cos  ϕ 1 sin  ϕ 2 1 + cos  ϕ 2 1 + cos  ϕ 2 0 0 1 + sin  ϕ 1 sin  ϕ 2 0 1 + sin  ϕ 1 sin  ϕ 2 0 1 cos  ϕ 2 1 + cos  ϕ 2 0 0 1 sin  ϕ 1 sin  ϕ 2 0 1 + sin  ϕ 1 sin  ϕ 2 0 ] ,
g v ( x , y ) = p = 0 3 γ v ( λ , p ) T v ( x , y , λ ) S ( x , y , λ , p ) d λ + ω ( x , y ) ,
g v ( m , n ) = p = 0 3 k = 1 L γ v ( k , p ) T v ( m , n , k ) S ( m , n , k , p ) + ω ( m , n ) ,
G v = Γ v T v S + Ω = H v S + Ω ,
G v = [ H v 0 , H v 1 , H v 2 , H v 3 ] [ S 0 T , S 1 T , S 2 T , S 3 T ] T + Ω ,
H v p = [ diag ( γ v ( 1 , p ) T v 1 ) 0 M × M N 0 M ( L 1 ) × M N   diag ( γ v ( 2 , p ) T v 2 )   0 M ( L 1 ) × M N 0 M ( L 2 ) × M N diag ( γ v ( L , p ) T v L ) ] ,
T v k = [ T 0 , k , k , v , T 0 , k + 1 , k , v , , T M 1 , N 2 + k , k , v , T M 1 , N 1 + k , k , v ] T .
G = [ G 1 G 2 G 3 G 4 G 5 ] = [ H 10 H 11 H 12 H 13 H 20 H 21 H 22 H 23 H 30 H 31 H 32 H 33 H 40 H 41 H 42 H 43 H 50 H 51 H 52 H 53 ] [ S 0 S 1 S 2 S 3 ] + Ω .
G = HS + Ω .
ϕ 1 = 2 π Δ n t 1 / λ , ϕ 2 = 2 π Δ n t 2 / λ ,
S ^ = argmin S { 1 2 g H S 2 2 + τ H T V ( S ) }
S 0 = I 0 + I 90 , S 1 = I 0 I 90 , S 2 = I 45 I 135 , S 3 = I R I L ,
S 3 s i m = 0.1 I n l p = 0.1 ( S 0 S 1 2 + S 2 2 ) ,
S 1 m ( x , y ) = β 0 ( λ ) S 0 ( x , y ) + β 1 ( λ ) S 1 ( x , y ) + β 2 ( λ ) S 2 ( x , y ) + β 3 ( λ ) S 3 ( x , y ) ,
S 1 m ( i ) ( λ ) = β 0 ( λ ) S 0 ( i ) + β 1 ( λ ) S 1 ( i ) + β 2 ( λ ) S 2 ( i ) .
DoP = S 1 2 + S 2 2 + S 3 2 / S 0 , AoP = arctan ( S 1 / S 2 ) / 2 .

Metrics