Abstract

We theoretically propose two orbital angular momentum (OAM) erbium-doped ring-core fiber (RCF) amplifiers capable of providing relatively uniform gain for 22 modes with 18 OAM ones over the C-band. Two schemes of doping profile are discussed, one with single layer erbium doping and the other with double layer erbium doping. Theoretical analyses and numerical simulations suggest that the proposed first OAM erbium-doped fiber amplifier (OAM-EDFA) can obtain a gain larger than 20 dB for all 22 modes with differential modal gain (DMG) lower than 0.71 dB. The second OAM-EDFA performs better and can provide a larger gain over 21.5 dB for all 22 modes, with a smaller DMG below 0.27 dB and the noise figure (NF) lower than 3.9 dB over the whole C band. The presented OAM-EDFA may open up new perspectives for long-distance transmission in capacity scaling fiber-optic communications using OAM modes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amplification of 12 OAM Modes in an air-core erbium doped fiber

Qiongyue Kang, Patrick Gregg, Yongmin Jung, Ee Leong Lim, Shaif-ul Alam, Siddharth Ramachandran, and David J. Richardson
Opt. Express 23(22) 28341-28348 (2015)

Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes

Yifan Deng, Hu Zhang, Hui Li, Xianfeng Tang, Lixia Xi, Wenbo Zhang, and Xiaoguang Zhang
Appl. Opt. 56(6) 1748-1752 (2017)

2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber

Hirotaka Ono, Tsukasa Hosokawa, Kentaro Ichii, Shoichiro Matsuo, Hitoshi Nasu, and Makoto Yamada
Opt. Express 23(21) 27405-27418 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [Crossref]
  2. R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  3. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  4. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref]
  6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  7. S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
    [Crossref]
  8. J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
    [Crossref]
  9. J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 30005–30009 (2017).
    [Crossref]
  10. J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
    [Crossref]
  11. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  12. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
    [Crossref]
  13. S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
    [Crossref]
  14. K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
    [Crossref]
  15. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
    [Crossref]
  16. Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
    [Crossref]
  17. Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
    [Crossref]
  18. Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).
  19. K. P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011).
    [Crossref]
  20. H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
    [Crossref]
  21. Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
    [Crossref]
  22. Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
    [Crossref]
  23. J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).
  24. Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
    [Crossref]
  25. H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
    [Crossref]
  26. Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).
  27. Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
    [Crossref]
  28. C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).
  29. S. Chen and J. Wang, “Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre,” Sci. Rep. 7(1), 3990 (2017).
    [Crossref]
  30. S. Chen and J. Wang, “Characterization of red/green/blue orbital angular momentum modes in conventional G. 652 fiber,” IEEE J. Quantum Electron. 53(4), 1–14 (2017).
    [Crossref]
  31. E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).
  32. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
    [Crossref]

2019 (1)

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

2017 (6)

Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

S. Chen and J. Wang, “Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre,” Sci. Rep. 7(1), 3990 (2017).
[Crossref]

S. Chen and J. Wang, “Characterization of red/green/blue orbital angular momentum modes in conventional G. 652 fiber,” IEEE J. Quantum Electron. 53(4), 1–14 (2017).
[Crossref]

J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 30005–30009 (2017).
[Crossref]

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

2016 (3)

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

2015 (2)

2014 (2)

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

2013 (3)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

2012 (4)

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

2011 (3)

2010 (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Abedin, K. S.

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Alam, S.

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Alam, S. U.

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Alam, S.-U.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Amezcua Correa, R.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Amma, Y.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

Antonio-Lopez, J.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Barua, P.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Baskiotis, C.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Bolle, C. A.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Chen, S.

S. Chen and J. Wang, “Characterization of red/green/blue orbital angular momentum modes in conventional G. 652 fiber,” IEEE J. Quantum Electron. 53(4), 1–14 (2017).
[Crossref]

S. Chen and J. Wang, “Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre,” Sci. Rep. 7(1), 3990 (2017).
[Crossref]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Correa, R.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

de Waardt, H.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Deng, Y.

DiGiovanni, D. J.

Dimarcello, F. V.

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Du, C.

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

Du, J.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Essiambre, R. J.

Eznaveh, Z

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fini, J. M.

Fishteyn, M.

Gecevicius, M.

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Gnauck, A. H.

Gregg, P.

Han, D.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Ho, D.

Ho, K. P.

Hosokawa, T.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Huijskens, F. M.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ichii, K.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

Jin, C.

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).

Jung, F. P.

Jung, Y.

Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
[Crossref]

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[Crossref]

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

Kahn, J. M.

Kang, Q.

Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
[Crossref]

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[Crossref]

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Koonen, A. M. J.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

LaRochelle, S.

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).

Li, G.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Li, H.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

Li, S.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).

Lim, E.

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

Lim, E. L.

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[Crossref]

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Lingle, R.

Liu, J.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

Lopez, E. A.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ma, J.

J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).

Matsuo, S.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

McCurdy, A.

Messaddeq, Y.

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).

Mo, Q.

Mo, Qi.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

Monberg, E. M.

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Nasu, H.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Okonkwo, C. M.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ono, H.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

Peckham, D. W.

Poletti, F.

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Ramachandran, S.

Randel, S.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Richardson, D.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Richardson, D. J.

Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
[Crossref]

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[Crossref]

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

Ryf, R.

Sahu, J.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Sahu, J. K.

Schülzgen, A.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Shen, L.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Shi, K.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Sidharthan, R.

Sierra, A.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Supradeepa, V. R.

Takenaga, K.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

Tang, X.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Taunay, T. F.

Thomsen, B.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Ung, B.

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).

van Uden, R. G. H.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, A.

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

Wang, H.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Wang, J.

J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 30005–30009 (2017).
[Crossref]

S. Chen and J. Wang, “Characterization of red/green/blue orbital angular momentum modes in conventional G. 652 fiber,” IEEE J. Quantum Electron. 53(4), 1–14 (2017).
[Crossref]

S. Chen and J. Wang, “Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre,” Sci. Rep. 7(1), 3990 (2017).
[Crossref]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Winzer, P. J.

Wisk, P. W.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Xi, L.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

Xia, C.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Xia, F.

J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).

Yamada, M.

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

Yan, M. F.

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Yang, J.-Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Y.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Yoo, S.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zacarias, J.

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

Zhang, H.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Zhang, W.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

Zhang, X.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, and X. Zhang, “Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes,” Appl. Opt. 56(6), 1748–1752 (2017).
[Crossref]

Zhang, Z.

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

Zhao, Y.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

Zhu, B.

Zhu, L.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre-and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[Crossref]

Appl. Opt. (1)

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Chin. Opt. Lett. (1)

J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 30005–30009 (2017).
[Crossref]

Crystals (1)

H. Zhang, D. Han, L. Xi, Z. Zhang, X. Zhang, H. Li, and W. Zhang, “Two-layer erbium-doped air-core circular photonic crystal fiber amplifier for orbital angular momentum mode division multiplexing system,” Crystals 9(3), 156 (2019).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Chen and J. Wang, “Characterization of red/green/blue orbital angular momentum modes in conventional G. 652 fiber,” IEEE J. Quantum Electron. 53(4), 1–14 (2017).
[Crossref]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

IEEE Photonics J. (2)

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Amma, T. Hosokawa, H. Ono, K. Ichii, K. Takenaga, S. Matsuo, and M. Yamada, “Ring-core Multicore Few-mode Erbium-doped Fiber Amplifier,” IEEE Photonics Technol. Lett. 29(24), 2163–2166 (2017).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Express (8)

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref]

Q. Kang, E. L. Lim, F. P. Jung, C. Baskiotis, S. U. Alam, and D. J. Richardson, “Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups,” Opt. Express 22(18), 21499–21507 (2014).
[Crossref]

K. P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011).
[Crossref]

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, and M. Yamada, “2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber,” Opt. Express 23(21), 27405–27418 (2015).
[Crossref]

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S.-U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[Crossref]

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
[Crossref]

K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
[Crossref]

Q. Kang, E. Lim, Y. Jung, J. K. Sahu, F. Poletti, C. Baskiotis, S. Alam, and D. J. Richardson, “Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration,” Opt. Express 20(19), 20835–20843 (2012).
[Crossref]

Opt. Lett. (1)

Photonics Res. (1)

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Sci. Rep. (2)

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Qi. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6(1), 38181 (2016).
[Crossref]

S. Chen and J. Wang, “Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre,” Sci. Rep. 7(1), 3990 (2017).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Other (5)

Y. Jung, Q. Kang, L. Shen, S. Chen, H. Wang, Y. Yang, K. Shi, B. Thomsen, R. Correa, Z Eznaveh, J. Zacarias, J. Antonio-Lopez, P. Barua, J. Sahu, S. Alam, and D. Richardson, “Few mode ring-core fiber amplifier for low differential modal gain,” In European Conference on Optical Communications(ECOC) (Gothenburg, Sweden, 2017), paper 1–3 (2017).

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Tailored modal gain in a multi-mode erbium-doped fiber amplifier based on engineered ring doping profiles,” In Photonics North(International Society for Optics and Photonics) 8915, 89150A (2013).

E. L. Lim, Q. Kang, M. Gecevicius, F. Poletti, S. U. Alam, and D. J. Richardson, “Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.2 (2013).

J. Ma, F. Xia, S. Li, and J. Wang, “Design of orbital angular momentum (OAM) erbium doped fiber amplifier with low differential modal gain,” in Optical Fiber Communication Conference(Optical Society of America, 2015), paper W2A.40 (2015).

Q. Kang, E. Lim, Y. Jung, F. Poletti, S. U. Alam, and D. J. Richardson, “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(Optical Society of America, 2013), paper OTu3G.3 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic cross-section, (b) refractive index profile and OAM mode distributions of the adopted RCF.
Fig. 2.
Fig. 2. Spatial phase distributions of the x-component electric field of 22 modes (18 OAM ones).
Fig. 3.
Fig. 3. (a) Schematic cross-section of the adopted EDF with single layer erbium doping. (b)(c) The overlap along the radial direction between the erbium doping profile (dashed red line) with (b) the refractive index profile and (c) the normalized intensity distribution of OAM modes at 1550 nm and pump mode at 980 nm.
Fig. 4.
Fig. 4. Minimum MDG (white dashed line) and DMG among all 22 modes as functions of ρ and d1 in a 10 m long EDF for single layer erbium doping. The final design point (cyan dashed circle) is where the gain keeps larger than 20 dB and DMG equals 0.71 dB.
Fig. 5.
Fig. 5. Optical power of pump, signal and ASE noise versus transmission length for single layer erbium doping.
Fig. 6.
Fig. 6. (a) Schematic cross-section of the adopted EDF with double layer erbium doping. (b)(c) The overlap along the radial direction between the erbium doping profile with (b) the refractive index profile and (c) the normalized intensity distribution of OAM modes at 1550 nm and pump mode at 980 nm.
Fig. 7.
Fig. 7. Minimum MDG (white dashed line) and DMG among all 22 modes as functions of $\varDelta$ρ and d3 when fixing d2 = 0.5 µm in a 10 m long EDF for double layer erbium doping. The final design point (red dashed circle) is where the gain keeps larger than 22.4 dB and DMG equals 0.25 dB.
Fig. 8.
Fig. 8. Optical power of pump, signal and ASE noise versus transmission length for double layer erbium doping.
Fig. 9.
Fig. 9. Minimum MDG and DMG among all 22 modes versus (a) pump power and (b) signal power.
Fig. 10.
Fig. 10. MDG and NF of all 22 modes and DMG versus signal wavelength.

Tables (1)

Tables Icon

Table 1. Optimal Design with Minimum DMG under Different Width d2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P k d z = u k σ e k [ P k ( z ) + 2 h Δ ν k ] 0 2 π 0 a i k ( r , ϕ ) n 2 ( r , ϕ , z ) rdrd ϕ u k σ a k P k ( z ) 0 2 π 0 a i k ( r , ϕ ) n 1 ( r , ϕ , z ) rdrd ϕ u k α P k ( z )
n 2 ( r , ϕ , z ) = N t ( r , ϕ , z ) k σ a k τ h ν k i k ( r , ϕ ) P k ( z ) k ( σ a k + σ e k ) τ h ν k i k ( r , ϕ ) P k ( z ) + 1
{ d P p u m p ( z ) d z = P p u m p ( z ) 0 2 π 0 a σ a p u m p n 1 ( r , ϕ , z ) i p u m p ( r , ϕ ) r d r d ϕ d P s i g n a l , m ( z ) d z = P s i g n a l , m ( z ) 0 2 π 0 a [ σ e s i g n a l n 2 ( r , ϕ , z ) σ a s i g n a l n 1 ( r , ϕ , z ) ] i s i g n a l , m ( r , ϕ ) r d r d ϕ d P A S E λ , m ( z ) d z = P A S E λ , m ( z ) 0 2 π 0 a [ σ e A S E λ n 2 ( r , ϕ , z ) σ a A S E λ n 1 ( r , ϕ , z ) ] i A S E λ , m ( r , ϕ ) r d r d ϕ + 2 h ν A S E λ Δ ν A S E λ 0 2 π 0 a σ e A S E λ n 2 ( r , ϕ , z ) i A S E λ , m ( r , ϕ ) r d r d ϕ
{ n 1 ( r , ϕ , z ) = 1 / τ + W 3 ( r , ϕ , z ) 1 / τ + W 1 ( r , ϕ , z ) + W 2 ( r , ϕ , z ) + W 3 ( r , ϕ , z ) ρ ( r , ϕ ) n 2 ( r , ϕ , z ) = W 1 ( r , ϕ , z ) + W 2 ( r , ϕ , z ) 1 / τ + W 1 ( r , ϕ , z ) + W 2 ( r , ϕ , z ) + W 3 ( r , ϕ , z ) ρ ( r , ϕ ) n 1 ( r , ϕ , z ) + n 2 ( r , ϕ , z ) = ρ ( r , ϕ )
{ W 1 ( r , ϕ , z ) = σ a p u m p P p u m p i p u m p ( r , ϕ , z ) h ν p u m p W 2 ( r , ϕ , z ) = m σ a s i g n a l P s i g n a l , m i s i g n a l , m ( r , ϕ , z ) h ν s i g n a l + m λ σ a A S E λ P A S E λ , m i A S E λ , m ( r , ϕ , z ) h ν A S E λ W 3 ( r , ϕ , z ) = m σ e s i g n a l P s i g n a l , m i s i g n a l , m ( r , ϕ , z ) h ν s i g n a l + m λ σ e A S E λ P A S E λ , m i A S E λ , m ( r , ϕ , z ) h ν A S E λ

Metrics