Abstract

Ultrafast dynamic of thin surface plasma layer plays a crucial role in the formation of periodic surface ripples after laser pulse irradiation. Using the pump-probe imaging technique, a complete scenario of the periodic ripples formation on a GaP surface is demonstrated after being irradiated by single femtosecond laser pulse. The ripples firstly emerge at delay time of several tens of picoseconds, and disappear completely at several hundreds of picoseconds, resulting in a transient overheating solid state ablation crater. It’s interesting that new ripples appear and gradually become deep and clear after hundreds of picoseconds. A part of these ripples remain after the ablation crater is solidified. The period of the remained ripples is measured and approximately equal to the periods of the two transient ripples. The thin surface plasma model with multi-layer is introduced to study the formation of periodic ripples. The dynamics of the carrier excitation, carrier and lattice temperature, transient dielectric constant, and other factors are obtained by the two-temperature model and the Drude model. The results show that the periods of electric field distributions at different depths of the plasma layer are the same. The formation of the two transient ripples and the remained ripples are all related to the periodic energy deposition due to the SPP excitation at the air-plasma interface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse

Jukun Liu, Xin Jia, Weishu Wu, Ke Cheng, Donghai Feng, Shian Zhang, Zhenrong Sun, and Tianqing Jia
Opt. Express 26(5) 6302-6315 (2018)

Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis
J. Opt. Soc. Am. B 27(5) 1065-1076 (2010)

Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara
Opt. Express 21(22) 26323-26334 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
    [Crossref]
  2. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  3. H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
    [Crossref]
  4. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  5. I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
    [Crossref]
  6. Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
    [Crossref]
  7. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
    [Crossref]
  8. Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
    [Crossref]
  9. L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
    [Crossref]
  10. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
    [Crossref]
  11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
    [Crossref]
  12. Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
    [Crossref]
  13. X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
    [Crossref]
  14. J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
    [Crossref]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref]
  16. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  17. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
    [Crossref]
  18. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
    [Crossref]
  19. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
    [Crossref]
  20. Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
    [Crossref]
  21. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
    [Crossref]
  22. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  23. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [Crossref]
  24. W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
    [Crossref]
  25. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref]
  26. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
    [Crossref]
  27. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  28. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
    [Crossref]
  29. M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
    [Crossref]
  30. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
    [Crossref]
  31. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a prefabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
    [Crossref]
  32. X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
    [Crossref]
  33. X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
    [Crossref]
  34. K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
    [Crossref]
  35. J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
    [Crossref]
  36. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
    [Crossref]
  37. T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
    [Crossref]
  38. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
    [Crossref]
  39. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [Crossref]
  40. F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
    [Crossref]
  41. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
    [Crossref]
  42. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
    [Crossref]
  43. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
    [Crossref]
  44. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  45. K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
    [Crossref]
  46. E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
    [Crossref]
  47. M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014).
    [Crossref]
  48. M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).
  49. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  50. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
    [Crossref]
  51. D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
    [Crossref]
  52. S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).
  53. S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).
  54. P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
    [Crossref]
  55. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
    [Crossref]
  56. Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
    [Crossref]
  57. H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
    [Crossref]
  58. J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
    [Crossref]

2019 (3)

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

2018 (5)

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

2017 (8)

W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

2016 (4)

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (8)

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

2012 (1)

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

2010 (1)

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

2009 (4)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (1)

2007 (1)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

2005 (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (2)

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

2003 (1)

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

1984 (1)

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

1983 (2)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

1967 (1)

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

Abdulhalim, I.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Adachi, S.

S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).

S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).

Adams, D. P.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Agassi, D.

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

Altucci, C.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Amoruso, S.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Anastasiadis, S. H.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Austin, D. R.

Barberoglou, M.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Beresna, M.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Bian, H. D.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Bounhalli, M.

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Bruzzese, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Cao, K.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cao, X.

Cao, X. W.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Castillejo, M.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Chaliyawala, H. A.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Chen, L.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

Chen, Q.

Chen, Q. D.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Chen, Z.

Cheng, C. F.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Cheng, J.

Cheng, K.

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Chowdhury, E. A.

Colombier, J. P.

Dai, Y.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Das, S. K.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

de Abajo, F. J. G.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

de Aldana, J. R. V.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Debroy, A.

Deng, Q.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Derrien, T. J. Y.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Diwakar, P. K.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Domingo, C.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Drevensek-Olenik, I.

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ezquerra, T. A.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Fan, H.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Faure, N.

Feng, D.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Feng, D. H.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Fittipaldi, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Florian, C.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

Fotakis, C.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Freeman, J. R.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Fuentes-Edfuf, Y.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Garcia-Lechuga, M.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garcia-Leis, A.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garcial-Lechuga, M.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Garrelie, F.

Gesuele, F.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Gnilitskyi, I.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Grunwald, R.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

Hampp, N.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Harbrecht, B.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Harilal, S. S.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Hashida, M.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Hassanein, A.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

He, M.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

He, W.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Hernández, M.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Hernandez-Rueda, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Hou, S.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Hu, Z.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Huang, Y.

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Huo, Y.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Ilday, F. Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jia, T.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Jia, T. Q.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Jia, X.

Jiang, Q.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

Juodkazis, S.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

Kafka, K. R. P.

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Khanna, S.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Kim, H. C.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Kruempelmann, J.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Kruger, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kühler, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lei, Y.

Leiderer, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Levy, Y.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Li, H.

Li, Q.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Li, X. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Liu, J.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Lu, B.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Ma, G. H.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Maddalena, P.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Martín-Fabiani, I.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Maycock, P. D.

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

McGlynn, E.

Messaoudi, H.

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Miyasaka, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Moreno, P.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Mosbacher, M.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Mukhopadhyay, I.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Murphy, R. D.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Nie, Y.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Nivas, J. J.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Pan, J.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Parriaux, O.

Patel, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Pati, R.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peng, N.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Pietzonka, C.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Puerto, D.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Purohit, Z.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Qiu, J.

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Ray, A.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Rebollar, E.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Reinhardt, H.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Reynaud, S.

Roling, B.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Rosenfeld, A.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rueda, D. R.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sakab, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Sanchez-Cortes, S.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Sang, T.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Shuai, B.

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Shur, M. S.

M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).

Siegel, J.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Solis, J.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Solodar, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Spanakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Stratakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Sun, H.

Sun, H. B.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Sun, H. Y.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Sun, Z.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Sun, Z. R.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Tang, B.

Tian, W.

Tokita, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Tonchev, S.

Torralva, B.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Tzanetakis, P.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Verhoff, B.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Wang, H. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Wang, J.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Wang, L.

Wang, M.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Wu, Q.

Wu, W.

Xi, H.

Xia, Y.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Xiong, P.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Xu, B.

Xu, J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Xu, N. S.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Xu, Z.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Yalisove, S. M.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Yan, X. N.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Yang, D.

Yang, J.

Yang, L.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Yang, M.

Yao, J.

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yi, A. Y.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yuan, Y.

Zhang, B.

Zhang, F.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Zhang, H.

Zhang, J.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, L.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Zhang, N.

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Zhang, S.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Zhang, S. A.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Zhang, Y.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Zhao, H.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Zheng, C.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Zhou, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Zorba, V.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

ACS Photonics (2)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Adv. Mater. (1)

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Appl. Phys. A (2)

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Appl. Phys. Lett. (4)

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Appl. Surf. Sci. (1)

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Beilstein J. Nanotechnol. (1)

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Chin. Opt. Lett. (2)

J. Appl. Phys. (6)

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (3)

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Laser Phys. (1)

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Nanomaterials (1)

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Nanotechnology (2)

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Opt. Express (7)

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a prefabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref]

W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
[Crossref]

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Phys. Chem. Chem. Phys. (1)

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Phys. Rev. (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Phys. Rev. B (5)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Phys. Rev. Lett. (2)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Plasmonics (1)

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Proc. SPIE (1)

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Sci. Rep. (4)

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Solid-State Electron. (1)

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

Spectrochim. Acta, Part B (1)

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Other (3)

M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).

S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).

S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) The experiment setup. DL: delay line, BS: beam splitter. (b) The concave lens increases the focus radius from 2.6 µm to 28 µm. (c) Blue triangle line: the emission intensity on a ZnSe crystal along the white arrow in (b). Red rectangular line: the calculated laser intensity according to the emission intensity. (d) The spectra of the white-light pulse before (blue solid curve) and after the short-pass filter (black dotted curve) [1].
Fig. 2.
Fig. 2. (a) AFM image of the femtosecond laser fabricated nanogroove on the GaP crystal. (b) Cross-profiles of the nanogroove at different positions marked in (a).
Fig. 3.
Fig. 3. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.5 J/cm2.
Fig. 4.
Fig. 4. The intensity profiles along the arrows in Fig. 3.
Fig. 5.
Fig. 5. (a) AFM image of the ablation crater by a single laser pulse at a laser fluence F = 2.5 J/cm2. (b) The height profile along the line I in (a). The inset is the part of the rectangle in (b).
Fig. 6.
Fig. 6. Laser-induced thin plasma layer supporting the SPPs at the interface of the air plasma resulting in the formation of LSFL by periodic energy deposition.
Fig. 7.
Fig. 7. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.1 J/cm2.
Fig. 8.
Fig. 8. The intensity profiles along the arrows in Fig. 7.
Fig. 9.
Fig. 9. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 1.7 J/cm2.
Fig. 10.
Fig. 10. The intensity profiles along the arrows in Fig. 9.
Fig. 11.
Fig. 11. Delay times when the ripples first appearance, best, disappearance, and second appearance.
Fig. 12.
Fig. 12. Average depths of the ablation crater and heights of ripples vary with the laser fluences.
Fig. 13.
Fig. 13. (a) The evolution of the carrier density at the GaP surface irradiated with a laser pulse of 50 fs and 2.5 J/cm2, where Ip is the laser pulse with a peak at 250 fs, and the peak of the carrier density is 275 fs. (b) The evolution of the electron temperature Te and lattice temperature Tl. (c) The evolution of the real and imaginary parts of the dielectric constant. (d) The refractive index and extinction coefficient vary with the carrier density Ne.
Fig. 14.
Fig. 14. (a) Spatiotemporal evolution of the real part of the dielectric constant under the laser fluence of 2.5 J/cm2. The black line defines the limitation of SP excitation Re (ɛ′) = −1. (b) Spatiotemporal evolution of the crystal temperature along the direction of the incident laser. The black line defines the liquid and solid phases.
Fig. 15.
Fig. 15. (a) The surface plasma layer model. “Line 1”and “Line 2” are the observation lines. The groove with the depth of 100 nm and the width of 400 nm. SBC is the scattering boundary conditions. PEC is perfect electric conductor. (b)The electric field intensities at the air-plasma interface (green line) and at the plasma-crystal interface 40 nm below the surface (red dotted line) illuminated by 800 nm light.

Tables (1)

Tables Icon

Table 1. The parameters of GaP crystal at 800 nm light

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N e t = D 0 x ( N e x ) γ N e 3 + δ N e  +  β F 2 2 ω  
C e T e t = κ e x ( T e x ) 3 N e k B τ ( T e T l )  +  ( N e θ ) F  +  β F 2
C l T l t = κ l x ( T l x )  +  3 N e k B τ ( T e T l )

Metrics