Abstract

In this work, we investigate a pedestal tantalum oxide (Ta2O5) material platform for integrated nonlinear optics (NLO). In order to achieve low propagation losses with this material, pedestal waveguides with Ta2O5 cores were designed. The nonlinear refractive index n2 of this new platform was obtained by measuring the amount of spectral broadening due to self-phase modulation (SPM) of 23 fs optical pulses at 785 nm propagating through the waveguides. In this manner, a nonlinear index of (5.8 ± 2.0) × 10−19 m2W−1 was found for this material, which is in good agreement with values reported in related works where strip waveguides were used for a similar purpose. Furthermore, due to the pedestal configuration, propagation losses as low as 1.6 dB·cm−1 for narrow waveguides and 0.1 dB·cm−1 for large waveguides were obtained. Finite element method (FEM) mode analysis was performed to calculate the mode characteristics, as well as the effective areas of the waveguides. The high nonlinear and linear refractive indices, wide bandgap and low propagation losses make this platform ideal for applications extending from the visible into the mid-IR regions of the optical spectrum. Due the large gap, Ta2O5 should have low two photon absorption at the near-IR as well.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates

Michael Belt, Michael L. Davenport, John E. Bowers, and Daniel J. Blumenthal
Optica 4(5) 532-536 (2017)

Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure

Chung-Lun Wu, Bo-Tsang Chen, Yuan-Yao Lin, Wei-Chen Tien, Gong-Ru Lin, Yi-Jen Chiu, Yung-Jr Hung, Ann-Kuo Chu, and Chao-Kuei Lee
Opt. Express 23(20) 26268-26275 (2015)

Optical Propagation in Sheet and Pattern Generated Films of Ta2O5

D. H. Hensler, J. D. Cuthbert, R. J. Martin, and P. K. Tien
Appl. Opt. 10(5) 1037-1042 (1971)

References

  • View by:
  • |
  • |
  • |

  1. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Integrated nonlinear optical signal processing in cmos compatible platforms,” Opt. Express 11(12), 1385–1391 (2003).
    [Crossref]
  2. Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
    [Crossref]
  3. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  4. A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
    [Crossref]
  5. L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
    [Crossref]
  6. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
    [Crossref]
  7. J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
    [Crossref]
  8. A. Pasquazi, Y. Park, J. Azana, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010).
    [Crossref]
  9. Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
    [Crossref]
  10. K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
    [Crossref]
  11. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [Crossref]
  12. E. G. Melo, M. I. Alayo, and D. O. Carvalho, “Study of the pedestal process for reducing sidewall scattering in photonic waveguides,” Opt. Express 25(9), 9755–9760 (2017).
    [Crossref]
  13. Y.-Y. Lin, C.-L. Wu, W.-C. Chi, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Self-phase modulation in highly confined submicron Ta2O5 channel waveguides,” Opt. Express 24(19), 21633–21641 (2016).
    [Crossref]
  14. C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
    [Crossref]
  15. D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
    [Crossref]
  16. F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
    [Crossref]
  17. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22(23), 3892–3894 (1983).
    [Crossref]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).

2018 (2)

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

2017 (2)

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

E. G. Melo, M. I. Alayo, and D. O. Carvalho, “Study of the pedestal process for reducing sidewall scattering in photonic waveguides,” Opt. Express 25(9), 9755–9760 (2017).
[Crossref]

2016 (1)

2015 (2)

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
[Crossref]

2012 (2)

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
[Crossref]

2011 (2)

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

2010 (3)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azana, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

2004 (1)

2003 (1)

1983 (1)

A. Gaeta, C. P.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Agarwal, A.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).

Alayo, M. I.

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

E. G. Melo, M. I. Alayo, and D. O. Carvalho, “Study of the pedestal process for reducing sidewall scattering in photonic waveguides,” Opt. Express 25(9), 9755–9760 (2017).
[Crossref]

Ang, L.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Azana, J.

Baumberg, J. J.

Bergman, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

Biberman, A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

Bonfim, F. A.

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

Carvalho, D. O.

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

E. G. Melo, M. I. Alayo, and D. O. Carvalho, “Study of the pedestal process for reducing sidewall scattering in photonic waveguides,” Opt. Express 25(9), 9755–9760 (2017).
[Crossref]

Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
[Crossref]

Cattaneo, F.

Chan, J.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

Chee, A.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Chi, W.-C.

Chiu, Y.-J.

Chu, A.-K.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Chu, S. T.

da Silva, D. M.

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

del Cacho, V. D.

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Fain, R.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Farsi, A.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Finlayson, C. E.

Foster, A. C.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

Foster, M. A.

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Gaeta, A.

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
[Crossref]

Gaeta, A. L.

Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

Griffith, A.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Hung, Y.-J.

Kassab, L. R.

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

Kimerling, L.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Lau, R.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Lau, R. K. W.

Lee, C.-K.

Lee, Y.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Légaré, F.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Levy, J. S.

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

Lin, Y.-Y.

Lipson, M.

Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
[Crossref]

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Little, B. E.

Melo, E. G.

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

E. G. Melo, M. I. Alayo, and D. O. Carvalho, “Study of the pedestal process for reducing sidewall scattering in photonic waveguides,” Opt. Express 25(9), 9755–9760 (2017).
[Crossref]

Menard, M.

Mohanty, A.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azana, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010).
[Crossref]

Moses, E.

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Moss, D. J.

Netti, M. C.

Ng, D.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Ng, S.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Okamura, Y.

Okawachi, Y.

Y. Okawachi, K. L. M. Yu, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40(22), 5267–5270 (2015).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
[Crossref]

Ooi, K.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Ophir, N.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ask and dpsk signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–179 (2011).
[Crossref]

Oron, D.

Padmaraju, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

Park, Y.

Pasquazi, A.

Perney, N. M. B.

Ramelow, S.

Rangel, R. C.

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Saha, K.

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

Silberberg, Y.

Tai, C.-Y.

Tan, D.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Thiberge, S.

Turner-Foster, A. C.

Wang, Q.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Wang, T.

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

Wilkinson, J. S.

Wu, C.-L.

Xu, L.

Y. Okawachi, J. C.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Yamamoto, S.

Yelin, D.

Yoshinaka, S.

Yu, C. P. M.

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Yu, K. L. M.

Appl. Opt. (1)

IEEE Photonics J. (1)

Y. Okawachi, A. Gaeta, and M. Lipson, “Breakthroughs in nonlinear silicon photonics 2011,” IEEE Photonics J. 4(2), 601–606 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photonics Technol. Lett. 23(2), 73–75 (2011).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photonics Technol. Lett. 24(16), 1375–1377 (2012).
[Crossref]

J. Lumin. (1)

D. O. Carvalho, L. R. Kassab, V. D. del Cacho, D. M. da Silva, and M. I. Alayo, “A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications,” J. Lumin. 203, 135–144 (2018).
[Crossref]

Nat. Commun. (2)

K. Ooi, D. Ng, T. Wang, A. Chee, S. Ng, Q. Wang, L. Ang, A. Agarwal, L. Kimerling, and D. Tan, “Pushing the limits of CMOS optical parametric amplifiers with usrn: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878–10 (2017).
[Crossref]

A. Griffith, R. Lau, J. C. Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, C. P. M. Yu, C. P. A. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Nat. Photonics (2)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (1)

F. A. Bonfim, R. C. Rangel, D. M. da Silva, D. O. Carvalho, E. G. Melo, M. I. Alayo, and L. R. Kassab, “A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles,” Opt. Mater. 86, 433–440 (2018).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Fabrication process of pedestal waveguides: (a) SiO$_{2}$ desposition and optical contact lithography; (b) Wet etch of SiO$_{2}$ layer; (c) Isotropic reactive ion etching of the silicon substrate; (d) Thermal oxidation; (e) Depostion of the Ta$_{2}$O$_{5}$ core.
Fig. 2.
Fig. 2. (a) SEM micrograph of a 5 $\mu$m-wide pedestal waveguide. (b) Magnitude of the E-field’s x component associated with the fundamental mode of a 5 $\mu$m-wide pedestal waveguide, obtained by FEM mode analysis.
Fig. 3.
Fig. 3. (a) Propagation loss results of Ta$_{2}$O$_{5}$ pedestal waveguides in the 5 -100 $\mu$m width range. The inset shows the slope of the measured light intensity captured by the CCD camera as a function of the optical waveguide length. (b) Optical intensity spectra at the output of the waveguides for different peak powers inside the waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω m a x Δ ω 0 = 0.86 L e f f n 2 P 0 ω 0 c A e f f ,
L e f f = 1 e α d α .

Metrics