Abstract

The first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth techniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE. The UTC epitaxial structure contains a 300 nm n-InP collection layer and a 300 nm n++-InGaAsP waveguide layer. UTC-PDs integrated with Coplanar Waveguides (CPW) exhibit 3 dB bandwidth greater than 65 GHz and output RF power of 1.1 dBm at 100 GHz. We also demonstrate accurate prediction of the absolute level of power radiated by our antenna integrated UTCs, between 200 GHz and 260 GHz, using 3d full-wave modelling and taking the UTC-to-antenna impedance match into account. Further, we present the first optical 3d full-wave modelling of waveguide UTCs, which provides a detailed insight into the coupling between a lensed optical fibre and the UTC chip.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy

Michele Natrella, Efthymios Rouvalis, Chin-Pang Liu, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 20(17) 19279-19288 (2012)

Uni-traveling-carrier variable confinement waveguide photodiodes

Jonathan Klamkin, Shannon M. Madison, Douglas C. Oakley, Antonio Napoleone, Frederick J. O’Donnell, Michael Sheehan, Leo J. Missaggia, Janice M. Caissie, Jason J. Plant, and Paul W. Juodawlkis
Opt. Express 19(11) 10199-10205 (2011)

Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current

Jin Li, Bing Xiong, Yi Luo, Changzheng Sun, Jian Wang, Zhibiao Hao, Yanjun Han, Lai Wang, and Hongtao Li
Opt. Express 24(8) 8420-8428 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
    [Crossref]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref]
  3. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
    [Crossref]
  4. D. Saeedkia and S. Safavi-Naeini, “Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves,” J. Lightwave Technol. 26(15), 2409–2423 (2008).
    [Crossref]
  5. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
    [Crossref]
  6. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
    [Crossref]
  7. M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
    [Crossref]
  8. M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
    [Crossref]
  9. C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).
  10. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
    [Crossref]
  11. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
    [Crossref]
  12. E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
    [Crossref]
  13. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
    [Crossref]
  14. D. Gallagher, “Photonic CAD Matures,” IEEE LEOS Newsl. 22(1), 8–14 (2008).
  15. T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik 31, 116–120 (1977).
  16. C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
    [Crossref]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  18. E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-Speed Uni-Travelling Carrier Photodiodes for InP Photonic Integrated Circuits,” Opt. Express 20(8), 9172–9177 (2012).
    [Crossref]
  19. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
    [Crossref]
  20. A. Seeds, C. Renaud, and M. Robertson, “Photodetector Including Multiple Waveguides,” U.S. Patent 7851782 B2, Dec. 14 (2010).
  21. Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).
  22. Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
    [Crossref]
  23. T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
    [Crossref]
  24. M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Accurate equivalent circuit model for millimetre-wave UTC photodiodes,” Opt. Express 24(5), 4698–4713 (2016).
    [Crossref]
  25. M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes,” Opt. Express 24(11), 11793–11807 (2016).
    [Crossref]
  26. T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
    [Crossref]
  27. S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).
  28. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
    [Crossref]
  29. A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).
  30. G. Zhou, P. Runge, S. Keyvaninia, S. Seifert, W. Ebert, and S. Mutscha, “High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes,” J. Lightwave Technol. 35(4), 717–721 (2017).
    [Crossref]
  31. X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).
  32. Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
    [Crossref]
  33. L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol, “High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform,” Opt. Express 24(8), 8290–8301 (2016).
    [Crossref]
  34. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
    [Crossref]
  35. D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
    [Crossref]
  36. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  37. X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
    [Crossref]
  38. J. Van Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 19(2), 319–329 (2002).
    [Crossref]
  39. H. Ito and T. Ishibashi, “Terahertz-wave generation using resonant-antenna-integrated uni-traveling-carrier photodiodes,” Proc. SPIE, Image Sensing Technologies: Materials, Devices, Systems, and Applications IV, 102090R, (2017).

2018 (2)

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

2017 (2)

G. Zhou, P. Runge, S. Keyvaninia, S. Seifert, W. Ebert, and S. Mutscha, “High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes,” J. Lightwave Technol. 35(4), 717–721 (2017).
[Crossref]

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

2016 (5)

2014 (1)

2012 (3)

2010 (1)

2009 (3)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

2008 (2)

2006 (1)

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

2003 (1)

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

2002 (2)

J. Van Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 19(2), 319–329 (2002).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

2001 (1)

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

1998 (1)

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

1997 (3)

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

1996 (1)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

1977 (1)

T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik 31, 116–120 (1977).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Absil, P.

Akahane, K.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Asghari, M.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Balakrishnan, S.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Beling, A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Belkin, M. A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Bowers, J. E.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Breuer, S.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Campbell, J.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Campbell, J. C.

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Cannard, P.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

Cao, Z.

Capasso, F.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Carpintero, G.

Chen, H.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Chen, Y.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chtioui, M.

Cunningham, J.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Davies, A. G.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

De Coster, J.

De Heyn, P.

Dong, P.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Ebert, W.

G. Zhou, P. Runge, S. Keyvaninia, S. Seifert, W. Ebert, and S. Mutscha, “High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes,” J. Lightwave Technol. 35(4), 717–721 (2017).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Feng, D.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Feng, N.-N.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Fice, M.

Firth, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

Fish, G.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Fish, G. A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

Fong, J.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Forrest, S. R.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

Gallagher, D.

D. Gallagher, “Photonic CAD Matures,” IEEE LEOS Newsl. 22(1), 8–14 (2008).

Giannopoulos, A.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

Globisch, B.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Gokhale, M. R.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Graham, C.

Hirata, A.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Hirota, Y.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

H. Ito and T. Ishibashi, “Terahertz-wave generation using resonant-antenna-integrated uni-traveling-carrier photodiodes,” Proc. SPIE, Image Sensing Technologies: Materials, Devices, Systems, and Applications IV, 102090R, (2017).

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

H. Ito and T. Ishibashi, “Terahertz-wave generation using resonant-antenna-integrated uni-traveling-carrier photodiodes,” Proc. SPIE, Image Sensing Technologies: Materials, Devices, Systems, and Applications IV, 102090R, (2017).

Jacob-Mitos, M.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Jalonen, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Jiao, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kanno, A.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Kato, K.

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

Kawanishi, T.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Keyvaninia, S.

Khanna, S. P.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Kohlhaas, R.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Krishnamoorthy, A. V.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Kung, C.-C.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Lepage, G.

Li, K.

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Li, Q.

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, H.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Liao, S.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Liebermeister, L.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Lin, W.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Linfield, E. H.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Liu, C.-P.

Liu, H.

Matsumoto, A.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Matsuoka, Y.

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

Minotani, T.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Mitsuhara, M.

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

Mittleman, D. M.

Moodie, D.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
[Crossref]

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).

Moodie, D. G.

Moore, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

Morgan, J. S.

A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

Mutscha, S.

Nagatsuma, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Nakajima, O.

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

Natrella, M.

Nellen, S.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Norberg, E.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Norberg, E. J.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

Pajewski, L.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Pessa, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Pflügl, C.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Poljak, D.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Posavitz, T.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

Ramaswamy, A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Renaud, C.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
[Crossref]

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-Speed Uni-Travelling Carrier Photodiodes for InP Photonic Integrated Circuits,” Opt. Express 20(8), 9172–9177 (2012).
[Crossref]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).

A. Seeds, C. Renaud, and M. Robertson, “Photodetector Including Multiple Waveguides,” U.S. Patent 7851782 B2, Dec. 14 (2010).

Renaud, C. C.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Robertson, M.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
[Crossref]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).

A. Seeds, C. Renaud, and M. Robertson, “Photodetector Including Multiple Waveguides,” U.S. Patent 7851782 B2, Dec. 14 (2010).

Robertson, M. J.

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

Roelkens, G.

Rogers, D.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Rouvalis, E.

Runge, P.

G. Zhou, P. Runge, S. Keyvaninia, S. Seifert, W. Ebert, and S. Mutscha, “High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes,” J. Lightwave Technol. 35(4), 717–721 (2017).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Saeedkia, D.

Safavi-Naeini, S.

Salokatve, A.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Sasaki, A.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

Savolainen, P.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Schell, M.

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

Seeds, A.

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-Speed Uni-Travelling Carrier Photodiodes for InP Photonic Integrated Circuits,” Opt. Express 20(8), 9172–9177 (2012).
[Crossref]

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
[Crossref]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).

A. Seeds, C. Renaud, and M. Robertson, “Photodetector Including Multiple Waveguides,” U.S. Patent 7851782 B2, Dec. 14 (2010).

Seeds, A. J.

Seifert, S.

Sesnic, S.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Shafiiha, R.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Shen, L.

Shen, Y.

Shimizu, N.

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smit, M. K.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Studenkov, P. V.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Sun, K.

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Thomson, J. K.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Toivonen, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Tran, M.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Umezawa, T.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Van Campenhout, J.

van der Tol, J. J. G. M.

van Dijk, F.

van Engelen, J. P.

Van Rudd, J.

Ventura, A.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Verheyen, P.

Wang, Q. J.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Wang, Y.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

Wang, Z.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

Warren, C.

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Wei, J.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Weiland, T.

T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik 31, 116–120 (1977).

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Xia, F.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

Xie, X.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Yamamoto, N.

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

Yang, Z.

Yao, W.

Yu, Q.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

Zheng, D.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Zhou, G.

Zhou, Q.

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1(6), 429–435 (2014).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

Appl. Phys. Lett. (1)

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Archiv Elektronik und Uebertragungstechnik (1)

T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Archiv Elektronik und Uebertragungstechnik 31, 116–120 (1977).

Electron. Lett. (1)

Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, and T. Ishibashi, “High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode,” Electron. Lett. 34(1), 122–123 (1998).
[Crossref]

IEE Proc.: Optoelectron. (1)

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.: Optoelectron. 150(2), 138–142 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron 10, 709–727 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-Temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15(3), 952–967 (2009).
[Crossref]

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. J. Norberg, G. A. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(No. 2), 1–6 (2018)..
[Crossref]

IEEE LEOS Newsl. (1)

D. Gallagher, “Photonic CAD Matures,” IEEE LEOS Newsl. 22(1), 8–14 (2008).

IEEE Photonics Technol. Lett. (1)

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photonics Technol. Lett. 13(8), 845–847 (2001).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microwave Theory Tech. 60(3), 509–517 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-Speed Response of Uni-Traveling-Carrier Photodiodes,” Jpn. J. Appl. Phys. 36(Part 1, No. 10), 6263–6268 (1997).
[Crossref]

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and , and F. Rossi, “Terahertz semiconductor heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref]

Opt. Express (7)

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
[Crossref]

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-Speed Uni-Travelling Carrier Photodiodes for InP Photonic Integrated Circuits,” Opt. Express 20(8), 9172–9177 (2012).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref]

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref]

M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Accurate equivalent circuit model for millimetre-wave UTC photodiodes,” Opt. Express 24(5), 4698–4713 (2016).
[Crossref]

L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol, “High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform,” Opt. Express 24(8), 8290–8301 (2016).
[Crossref]

M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes,” Opt. Express 24(11), 11793–11807 (2016).
[Crossref]

Optica (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Proc. SPIE (2)

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, and T. Kawanishi, “Study of high power generation in UTC-PD at 110-210 GHz,” Proc. SPIE 10531, 1053115 (2018).
[Crossref]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194(1), C1940C (2006).
[Crossref]

Prog. Electromagn. Res. M (1)

C. Warren, S. Sesnic, A. Ventura, L. Pajewski, D. Poljak, and A. Giannopoulos, “Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments,” Prog. Electromagn. Res. M 57, 175–183 (2017).
[Crossref]

Tech. Dig. Ultrafast Electron. Optoelectron. (1)

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, UC3 (1997).
[Crossref]

Thin Solid Films (1)

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films 306(2), 237–243 (1997).
[Crossref]

Other (7)

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” The 20th Annual Meeting of the IEEE, 782–783 (2007).

A. Seeds, C. Renaud, and M. Robertson, “Photodetector Including Multiple Waveguides,” U.S. Patent 7851782 B2, Dec. 14 (2010).

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-power waveguide MUTC photodiode with 70 GHz bandwidth,” Microwave Photonics (MWP), 2016 IEEE International Topical Meeting, 225–228, (2016).

S. Nellen, R. Kohlhaas, L. Liebermeister, S. Breuer, B. Globisch, and M. Schell, “Continuous Wave Terahertz Generation from Photodiode-Based Emitters with up to 200 µ W Terahertz Power,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018).

A. Beling, J. S. Morgan, K. Sun, and Q. Yu, “High Power Integrated 100 GHz Photodetectors,” International Topical Meeting on Microwave Photonics (MWP), (2018).

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide –coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” Proc. 2015 Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, 1–3 (2015).

H. Ito and T. Ishibashi, “Terahertz-wave generation using resonant-antenna-integrated uni-traveling-carrier photodiodes,” Proc. SPIE, Image Sensing Technologies: Materials, Devices, Systems, and Applications IV, 102090R, (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1.
Fig. 1. Band diagram of the device structure calculated with the software Nextnano.
Fig. 2.
Fig. 2. Illustration of major fabrication steps: (a) P-contact deposition, (b) P-contact ridge etching and waveguide etching, (c) N-contact deposition, (d) mesa etching and (e) passivation and via etching.
Fig. 3.
Fig. 3. Geometrical details of the initial UTC model used for the optical full-wave simulations.
Fig. 4.
Fig. 4. Power flow pattern along the Y direction and the propagation constant β of the two main modes.
Fig. 5.
Fig. 5. Side cross section of the power flow along the structure, showing the power coupling between the waveguide layer and the absorption layer in the ridge.
Fig. 6.
Fig. 6. Horizontal cross section through the absorber showing details of the power absorbed in the In0.53Ga0.47As layer for mode 1 and mode 2.
Fig. 7.
Fig. 7. Gaussian beam details for the X polarisation case. The figure shows the propagating electric field in free space, though the device structure is outlined in order to highlight the alignment between beam and waveguide.
Fig. 8.
Fig. 8. Side cross section view of the power flow along the Y direction.
Fig. 9.
Fig. 9. Horizontal cross section view (through the waveguide layer) of the power flow along the Y direction.
Fig. 10.
Fig. 10. Horizontal cross section, cutting through the absorber, showing details of the power absorbed in the In0.53Ga0.47As layer for both the X and Z polarised input Gaussian beams. The external quantum efficiency and responsivity are also given.
Fig. 11.
Fig. 11. Power flow on a horizontal cross section through the waveguide layer, for three different values of waveguide length, i.e. 15 µm, 35 µm and 50 µm.
Fig. 12.
Fig. 12. Quantum efficiency, external responsivity and power absorption pattern in the In0.53Ga0.47As layer, for the three different waveguide lengths.
Fig. 13.
Fig. 13. External responsivity vs misalignment.
Fig. 14.
Fig. 14. (a) Schematic diagram of the CPW UTC-PD structure, (b) fabricated CPW UTC-PD bar containing different p-contact size UTC-PDs (from left to right: 7 × 15 µm2, 3 × 15 µm2 and 4 × 15 µm2).
Fig. 15.
Fig. 15. I-V curve of CPW UTC-PDs with treatment by 10% HCl (1 min) before SiOxNy passivation layer deposition. The dark current is plotted as absolute value.
Fig. 16.
Fig. 16. Measured photocurrent of CPW UTC-PDs with different input optical power at bias voltage 0 V to −3 V. Responsivities for 4 × 15 µm2 and 7 × 15 µm2 devices at −2V are 0.20 A/W and 0.22 A/W, respectively.
Fig. 17.
Fig. 17. S21 response from 1 GHz to 67 GHz of CPW coupled UTC-PDs.
Fig. 18.
Fig. 18. CPW coupled UTC-PD output power measurement arrangement.
Fig. 19.
Fig. 19. RF Output power vs photocurrent of a 3 × 10 µm2 CPW UTC-PD at 100 GHz as a function of bias.
Fig. 20.
Fig. 20. Wire-bonded antenna integrated UTC-PD on a Si lens (D = 6 mm).
Fig. 21.
Fig. 21. Far field radiation pattern and directivity at 250 GHz.
Fig. 22.
Fig. 22. Cross section views of the electric field magnitude at 250 GHz for an antenna integrated UTC-PD integrated with a 6mm diameter Si lens.
Fig. 23.
Fig. 23. Power radiated by antenna integrated UTC-PDs (3 × 15 um2) mounted on a 6 mm diameter Si lens at bias of −2V. Here the antenna is not impedance matched with the UTC-PDs.
Fig. 24.
Fig. 24. Radiated power measurement arrangement. VOA indicates a variable optical attenuator.
Fig. 25.
Fig. 25. Calculated power radiated by antenna integrated UTC-PDs (3 × 15 um2) mounted on a 6 mm diameter Si lens, with antenna impedance matched with UTC-PD impedance.

Tables (3)

Tables Icon

Table 1. UTC-PD layer structure grown by SS-MBE

Tables Icon

Table 2. Material optical properties at 1550 nm wavelength (193.548 THz)

Tables Icon

Table 3. Performance comparison between Si based WG PD and SS-MBE grown InP WG UTC-PDs

Metrics