Abstract

This paper proposes a hybrid metal-graphene plasmonic sensor which can simultaneously perform multi-spectral sensing in near- and mid-IR ranges. The proposed sensor consists of an array of asymmetric gold nano-antennas integrated with an unpatterned graphene sheet. The gold antennas support sharp Fano-resonances for near-IR sensing while the excitation of graphene plasmonic resonances extend the sensing spectra to the mid-IR range. Such a broadband spectral range goes far beyond previously demonstrated multi-spectral plasmonic sensors. The sensitivity and figure of merit (FOM) as well as their dependence on the thickness of the sensing layer and Fermi energy of graphene are studied systematically. This new type of sensor combines the advantages of conventional metallic plasmonic sensors and graphene plasmonic sensors and may open a new door for high-performance, multi-functional plasmonic sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications

Mehrnoosh Salemizadeh, Fatemeh Fouladi Mahani, and Arash Mokhtari
J. Opt. Soc. Am. B 36(10) 2863-2870 (2019)

Graphene-based mid-infrared biosensor

Zohreh Vafapour, Yaser Hajati, Morteza Hajati, and Hossain Ghahraloud
J. Opt. Soc. Am. B 34(12) 2586-2592 (2017)

Hybridization-induced dual-band tunable graphene metamaterials for sensing

Shaokang Gong, Binggang Xiao, Lihua Xiao, Shengjun Tong, Sanshui Xiao, and Xiumin Wang
Opt. Mater. Express 9(1) 35-43 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Wong and M. Olivo, “Surface plasmon resonance imaging sensors: a review,” Plasmonics 9(4), 809–824 (2014).
    [Crossref]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.
  3. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  4. N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
    [Crossref]
  5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref]
  6. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
    [Crossref]
  7. G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
    [Crossref]
  8. J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
    [Crossref]
  9. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
    [Crossref]
  10. S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29(6), 994–1002 (2012).
    [Crossref]
  11. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref]
  12. B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
    [Crossref]
  13. M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
    [Crossref]
  14. F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
    [Crossref]
  15. Y.-S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
    [Crossref]
  16. M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, “Isotropic spiral plasmonic metamaterial for sensing large refractive index change,” Opt. Lett. 38(16), 3133–3136 (2013).
    [Crossref]
  17. B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
    [Crossref]
  18. C. Xiong, H. Li, H. Xu, M. Zhao, B. Zhang, C. Liu, and K. Wu, “Coupling effects in single-mode and multimode resonator-coupled system,” Opt. Express 27(13), 17718–17728 (2019).
    [Crossref]
  19. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref]
  20. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
    [Crossref]
  21. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4(1), 2154–2163 (2013).
    [Crossref]
  22. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  23. Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
    [Crossref]
  24. P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
    [Crossref]
  25. A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
    [Crossref]
  26. H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
    [Crossref]
  27. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  28. J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [Crossref]
  29. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  30. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref]
  31. Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
    [Crossref]
  32. M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
    [Crossref]
  33. B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
    [Crossref]
  34. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref]
  35. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
    [Crossref]
  36. O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the thz-range plasmon resonances on a micro-size graphene strip,” J. Phys. D: Appl. Phys. 49(5), 055105 (2016).
    [Crossref]
  37. C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
    [Crossref]
  38. T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
    [Crossref]
  39. T. Wu, Y. Luo, and L. Wei, “Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons,” Opt. Lett. 42(11), 2066–2069 (2017).
    [Crossref]
  40. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
    [Crossref]
  41. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
    [Crossref]
  42. M.-L. Zhai and D.-M. Li, “Tunable resonators based on hybrid metal–graphene structures at mid-infrared frequencies using an improved leapfrog wcs-fdtd method,” J. Electromagn. Waves Appl. 32(14), 1791–1800 (2018).
    [Crossref]
  43. F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13(12), 1917–1923 (2018).
    [Crossref]
  44. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36(10), 2863–2870 (2019).
    [Crossref]
  45. L. Wu, H. Chu, W. Koh, and E. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [Crossref]
  46. J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
    [Crossref]
  47. Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
    [Crossref]
  48. Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
    [Crossref]
  49. Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
    [Crossref]
  50. S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
    [Crossref]
  51. N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
    [Crossref]
  52. R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
    [Crossref]
  53. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref]
  54. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
    [Crossref]
  55. Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
    [Crossref]
  56. S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  57. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  58. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref]
  59. L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  60. L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
    [Crossref]
  61. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  62. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref]
  63. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
    [Crossref]
  64. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref]
  65. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
    [Crossref]
  66. G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
    [Crossref]
  67. M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
    [Crossref]
  68. G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
    [Crossref]
  69. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd Edition (John Wiley & Sons, Inc.,2006).
  70. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
    [Crossref]
  71. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
    [Crossref]
  72. J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
    [Crossref]

2019 (5)

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

C. Xiong, H. Li, H. Xu, M. Zhao, B. Zhang, C. Liu, and K. Wu, “Coupling effects in single-mode and multimode resonator-coupled system,” Opt. Express 27(13), 17718–17728 (2019).
[Crossref]

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36(10), 2863–2870 (2019).
[Crossref]

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
[Crossref]

2018 (7)

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

M.-L. Zhai and D.-M. Li, “Tunable resonators based on hybrid metal–graphene structures at mid-infrared frequencies using an improved leapfrog wcs-fdtd method,” J. Electromagn. Waves Appl. 32(14), 1791–1800 (2018).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13(12), 1917–1923 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Y.-S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

2017 (5)

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

T. Wu, Y. Luo, and L. Wei, “Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons,” Opt. Lett. 42(11), 2066–2069 (2017).
[Crossref]

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

2016 (4)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the thz-range plasmon resonances on a micro-size graphene strip,” J. Phys. D: Appl. Phys. 49(5), 055105 (2016).
[Crossref]

2015 (10)

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref]

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

2014 (3)

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

C. L. Wong and M. Olivo, “Surface plasmon resonance imaging sensors: a review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

2013 (8)

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4(1), 2154–2163 (2013).
[Crossref]

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, “Isotropic spiral plasmonic metamaterial for sensing large refractive index change,” Opt. Lett. 38(16), 3133–3136 (2013).
[Crossref]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

2012 (11)

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29(6), 994–1002 (2012).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

2011 (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

2010 (4)

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

L. Wu, H. Chu, W. Koh, and E. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[Crossref]

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

2009 (2)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref]

2008 (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

2007 (2)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

2006 (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

2005 (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

1998 (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4(1), 2154–2163 (2013).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Alharbi, R.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
[Crossref]

Alonsogonzalez, P.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Alonso-Gonzalez, P.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4(1), 2154–2163 (2013).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Amaia, Z. E.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

An, K. H.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Bai, B.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Baillargeat, D.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Bocková, M.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Bogdanova, M.

Boyd, A. K.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Cai, W.

Camara, N.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Cao, M.-S.

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Cao, W.-Q.

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Carrega, M.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Casanova, F.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Cen, C.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Centeno, A.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Chen, C.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Chen, C. K.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Chen, C.-H.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Chen, C.-M.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Chen, J.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Chen, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

Chen, W.

Y.-S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Chen, X.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Chocarro-Ruiz, B.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Chu, H.

Chuang, C.-H.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Coquet, P.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Cubukcu, E.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

Dahlin, A. B.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Dai, Q.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Dai, S.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Daniels, K. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

De Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd Edition (John Wiley & Sons, Inc.,2006).

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Deinega, A.

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

Dominguez, G.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Dorpe, P.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Drew, H. D.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Du, Y.

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Dubonos, S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Estevez, M.-C.

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

F. L. Koppens, H. R.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Falkovsky, L.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Fan, S.

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Fei, Z.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Feng, Y.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Fernández-Gavela, A.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Firsov, A.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Fogelström, M.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Fuhrer, M. S.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Gajic, R.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Gannett, W.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Gao, W.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Gao, Y.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Garcia de Abajo, F.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

García de Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Gaskill, D. K.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Giannini, V.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Golmar, F.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd Edition (John Wiley & Sons, Inc.,2006).

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Gu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

H. Bechtel, Z. H

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Hall, W. P.

S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29(6), 994–1002 (2012).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Hermans, L.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Herranz, S.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Hillenbr, R.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Hillenbrand, R.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Ho, H. P.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Homola, J.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

Hone, J.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Hong, Q.

Hook, F.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Hu, H.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Huang, J.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Huang, S.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Huang, T.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Hueso, L. E.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Irannejad, M.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
[Crossref]

Isic, G.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Jadidi, M. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Jans, H.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jin, Z.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Johnson, T. W.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Joshi, G. K.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Juste, J.

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Juste, J. P.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Kabashin, A.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Kall, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Kinaret, J.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Koh, W.

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Kono, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Koppens, F.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Kumbhar, A.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

Lagae, L.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Lechuga, L.

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Lechuga, L. M.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Lee, T.-W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Li, C.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

Li, D.-M.

M.-L. Zhai and D.-M. Li, “Tunable resonators based on hybrid metal–graphene structures at mid-infrared frequencies using an improved leapfrog wcs-fdtd method,” J. Electromagn. Waves Appl. 32(14), 1791–1800 (2018).
[Crossref]

Li, E.

Li, H.

Li, J.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Li, K.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Li, Q.

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Li, Z.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Liang, C.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Lienau, C.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Lin, H.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Lin, Y.-S.

Y.-S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Lindquist, N.

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Liu, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Liu, C.

Liu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Liu, J.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Liu, K.

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Liu, M.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Liu, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Liu, T.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Liu, X.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Liu, Z.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Liz-Marzan, L.

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Liz-Marzán, L. M.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Lopez, G. A.

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lozovik, Y.

Lundeberg, M.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Luo, Y.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Mahani, F. F.

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36(10), 2863–2870 (2019).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13(12), 1917–1923 (2018).
[Crossref]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Mazzotta, F.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

McClory, P. J.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

McLeod, A.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Mcpeak, K.

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Mokhtari, A.

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36(10), 2863–2870 (2019).
[Crossref]

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13(12), 1917–1923 (2018).
[Crossref]

Morozov, S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Moshchalkov, V.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Muhoberac, B. B.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

Murphy, T. E.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Myers-Ward, R. L.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Nagpal, P.

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Navickaite, G.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Ni, W.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Nikitin, A. Y.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Norris, D.

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Nosich, A. I.

O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the thz-range plasmon resonances on a micro-size graphene strip,” J. Phys. D: Appl. Phys. 49(5), 055105 (2016).
[Crossref]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Oh, S.

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Oh, S.-H.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Olivo, M.

C. L. Wong and M. Olivo, “Surface plasmon resonance imaging sensors: a review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Otte, M.

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Otte, M. A.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Pan, C.

Pan, P.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Pershoguba, S.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Pesquera, A.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Polini, M.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Potyrailo, R. A.

Principi, A.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Pris, A. D.

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Qian, L.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

Qin, S.

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Qu, Y.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Reed, J. C.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

Regan, W.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Ren, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Ren, M.

Rivas, J. G.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref]

Rodin, A.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Ryken, J.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Salemizadeh, M.

Sardar, R.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Sepulveda, B.

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Shang, J.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Shapoval, O. V.

O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the thz-range plasmon resonances on a micro-size graphene strip,” J. Phys. D: Appl. Phys. 49(5), 055105 (2016).
[Crossref]

Shaver, J.

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Shen, Y.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Shi, G.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Shu, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Shum, P. P.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Smith, K. A.

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

Soares, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Soler, M.

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Špacková, B.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Spasenovi, M.

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Sushkov, A. B.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

Tang, Y.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Taniguchi, T.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Tao, Z.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Tassin, P.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Thiemens, M.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Vajtai, R.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Valiyaveedu, S.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Van Dorpe, P.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Vandenbosch, G. A.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Varlamov, A.

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Vasic, B.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Vecchi, G.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref]

Velez, S.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

Verellen, N.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Vignale, G.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Viola, G.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Wagner, M.

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Wang, J.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

Wang, L.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Wang, Q. J.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Wang, X.-X.

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Wang, Y.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Watanabe, K.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Wei, L.

T. Wu, Y. Luo, and L. Wei, “Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons,” Opt. Lett. 42(11), 2066–2069 (2017).
[Crossref]

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Wenger, T.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Wim, V.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Woessner, A.

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

Wong, C. L.

C. L. Wong and M. Olivo, “Surface plasmon resonance imaging sensors: a review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Wrobel, P.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Wu, K.

Wu, L.

Wu, Q.

Wu, T.

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Wu, Z.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Xiao, S.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Xiong, C.

Xiong, F.

Xiong, P.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Xu, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Xu, H.

Xu, J.

Xu, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Xu, W.

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yang, W.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

Yang, X.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Yang, Z.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

Yao, X.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Yavuz, M.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
[Crossref]

Ye, J.

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

Ye, X.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Yi, Y.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Yi, Z.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Yong, K. T.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

Yu, T.

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Yu, X.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Yuan, J.

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Yuan, X.

Zalyubovskiy, S. J.

Zeng, S.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Zeng, W.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Zhai, M.-L.

M.-L. Zhai and D.-M. Li, “Tunable resonators based on hybrid metal–graphene structures at mid-infrared frequencies using an improved leapfrog wcs-fdtd method,” J. Electromagn. Waves Appl. 32(14), 1791–1800 (2018).
[Crossref]

Zhang, B.

Zhang, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref]

Zhang, M.

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Zhang, N. M. Y.

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Zhang, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Zhang, X.

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

Zhao, M.

Zhao, Y.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Zheng, J.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

Zhong, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Zhu, A. Y.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

Zhu, H.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

Zhu, J.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zhu, Y.

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref]

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Zhu, Z.

Zurutuza, A.

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

2D Mater. (1)

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4(2), 025103 (2017).
[Crossref]

ACS Nano (5)

M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

M. Otte, B. Sepulveda, W. Ni, J. Juste, L. Liz-Marzan, and L. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref]

ACS Photonics (1)

F. Mazzotta, T. W. Johnson, A. B. Dahlin, J. Shaver, S.-H. Oh, and F. Hook, “Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes,” ACS Photonics 2(2), 256–262 (2015).
[Crossref]

Adv. Mater. (2)

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30(12), 1706031 (2018).
[Crossref]

S. Zeng, S. Valiyaveedu, J. Shang, T. Yu, C. K. Chen, Y. Feng, D. Baillargeat, P. Coquet, H. P. Ho, A. Kabashin, and K. T. Yong, “Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing,” Adv. Mater. 27(40), 6163–6169 (2015).
[Crossref]

Adv. Mater. Technol. (1)

N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, and L. Wei, “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Adv. Mater. Technol. 2(2), 1600185 (2017).
[Crossref]

Adv. Opt. Mater. (2)

J. Li, J. Ye, C. Chen, L. Hermans, N. Verellen, J. Ryken, H. Jans, V. Wim, V. Moshchalkov, L. Lagae, and P. Dorpe, “Biosensing using diffractively coupled plasmonic crystals: the figure of merit revisited,” Adv. Opt. Mater. 3(2), 176–181 (2015).
[Crossref]

M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, “Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency,” Adv. Opt. Mater. 7(19), 1900689 (2019).
[Crossref]

Chem. Commun. (1)

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in au–graphene–ag hybrids,” Chem. Commun. 51(5), 866–869 (2015).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref]

Curr. Opin. Biotechnol. (1)

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref]

Eur. Phys. J. B (1)

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

J. Appl. Phys. (1)

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

J. Electromagn. Waves Appl. (1)

M.-L. Zhai and D.-M. Li, “Tunable resonators based on hybrid metal–graphene structures at mid-infrared frequencies using an improved leapfrog wcs-fdtd method,” J. Electromagn. Waves Appl. 32(14), 1791–1800 (2018).
[Crossref]

J. Mater. Chem. C (1)

Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance sers detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

J. Nanoelectron. Optoelectron. (1)

F. F. Mahani and A. Mokhtari, “Performance improvement of organic solar cells using a hybrid color filter electrode of graphene-aluminum nanorings,” J. Nanoelectron. Optoelectron. 13(12), 1917–1923 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

G. K. Joshi, P. J. McClory, B. B. Muhoberac, A. Kumbhar, K. A. Smith, and R. Sardar, “Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms,” J. Phys. Chem. C 116(39), 20990–21000 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (2)

O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the thz-range plasmon resonances on a micro-size graphene strip,” J. Phys. D: Appl. Phys. 49(5), 055105 (2016).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Langmuir (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[Crossref]

Nano Lett. (8)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref]

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Lett. 12(8), 4090–4094 (2012).
[Crossref]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref]

Nanophotonics (1)

G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, “Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration,” Nanophotonics 6(1), 123–136 (2017).
[Crossref]

Nanoscale (3)

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow spr linewidth in the uv region for plasmonic sensing,” Nanoscale 11(9), 4061–4066 (2019).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7(46), 19493–19500 (2015).
[Crossref]

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref]

Nat. Commun. (2)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4(1), 2154–2163 (2013).
[Crossref]

Nat. Mater. (3)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, and H. R. F. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Nat. Nanotechnol. (2)

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner, M. Liu, A. McLeod, G. Dominguez, and M. Thiemens, “Electronic and plasmonic phenomena at graphene grain boundaries,” Nat. Nanotechnol. 8(11), 821–825 (2013).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. H H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nat. Photonics (3)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature (1)

J. Chen, M. Badioli, P. Alonsogonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, Z. E. Amaia, N. Camara, F. Garcia de Abajo, R. Hillenbr, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

Y.-S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Phys. Rev. B (1)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Phys. Rev. Lett. (3)

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref]

Plasmonics (1)

C. L. Wong and M. Olivo, “Surface plasmon resonance imaging sensors: a review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Proc. IEEE (1)

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Proc. Natl. Acad. Sci. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. 103(46), 17143–17148 (2006).
[Crossref]

Rep. Prog. Phys. (1)

N. Lindquist, P. Nagpal, K. Mcpeak, D. Norris, and S. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref]

Science (4)

P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Sens. Actuators, B (1)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Sensors (2)

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862–877 (2019).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi, Y. Tang, Z. Yi, X. Ye, J. Liu, and S. Xiao, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18(12), 4489–4504 (2018).
[Crossref]

Other (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 308–319.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd Edition (John Wiley & Sons, Inc.,2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of linearly polarized waves impinging at a Au nano-antenna/graphene hybrid structure at normal incidence in a Cartesian coordinate system. The polarized state of incident wave is x-polarization. The structure has a multilayer configuration, consisting of a cover layer, a periodic array of asymmetric Au nano-antennas, an unpatterned monolayer graphene sheet and a semi-infinite substrate. $P = 350~nm$ denotes the period of a unit cell and $G = 100~nm$ is the gap of two Au antennas. $W =50~nm$ and $H = 50~nm$ denote the width and height of Au antennas. $L_{1} = 200~nm, L_{2} = 250~nm$ are the length of two Au antennas, respectively. The inset is top view.
Fig. 2.
Fig. 2. Simulated spectra of transmission, reflection and absorption for unpatterned graphene integrated with asymmetric Au nano-antennas with the refractive index of cover layer $n=1$ in: (a) Near-IR range; (b) Mid-IR range.
Fig. 3.
Fig. 3. (a,b,c) Distribution of local electric fields in z-direction. The field is normalized to the field amplitude of the incident light ($E_{0}$) and plotted at the x-y plane that is $5~nm$ below the graphene sheet. (d,e,f) Profile of near-field enhancement distribution. The field is normalized to $E_{0}$ and plotted at the x-z plane that is at the centre of the gap (y = 0). (a) and (d) are plotted at absorption peak of near-IR frequency ($1.06~\mu m$). (b) and (e) are plotted at absorption peak of mid-IR frequency ($6.32~\mu m$). (c) and (f) are plotted at absorption peak of mid-IR frequency ($7.18~\mu m$).
Fig. 4.
Fig. 4. (a,c) Calculated transmittance of the asymmetric Au nano-antenna/graphene hybrid structure with a $400~nm$-thick cover layer for different values of refractive index in both (a) near-IR and (c) mid-IR frequencies. (b,d) Wavelengths of the transmittance dips as a function of refractive index of the cover layer. The square dots in (b) represent positions of dip extracted from (a) and square dots in (d) represent positions of dip extracted from (c). The red and blue curves are the linear regression of the corresponding data.
Fig. 5.
Fig. 5. (a,b) Positions of transmittance dips as a function of refractive index for different thicknesses of the cover layer, ranging from $2~nm$ to $200~nm$. From the top red line to the bottom blue line, the slopes are $530~nm/RIU$, $250~nm/RIU$, $170~nm/RIU$, $80~nm/RIU$ and $7.5~nm/RIU$ for (a), while the slopes are $2300~nm/RIU$, $2100~nm/RIU$, $1775~nm/RIU$, $1025~nm/RIU$ and $250~nm/RIU$ for (b). (c,d) Calculated FOM with varied thickness of cover layer using Eq. 2 and Eq. 3. The square dots are simulated data from (a) and (b). (c) Near-IR range with surface sensitivity $S = 554.22~nm/RIU$ and decay length $l_{d} = 133.68~nm$ ; (d) Mid-IR range with $S = 2304.40~nm/RIU$ and $l_{d} = 33.85~nm$.
Fig. 6.
Fig. 6. Spectra of transmittance with different Fermi energy of graphene for (a) Near-IR range and (b) Mid-IR range.
Fig. 7.
Fig. 7. (a,b) Bulk sensitivity for different Fermi energy of graphene with a $400~nm$-thick cover. (c,d) Calculated FOM for varied thickness of cover layer with different Fermi energy of graphene. (a,c) Near-IR range; (b,d) Mid-IR range.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = 2 e 2 k B T π 2 i ω + i τ 1 ln [ 2 cosh E f 2 k B T ] + e 2 8 + e 2 4 [ 1 π arctan ( ω 2 E f 2 k B T ) i 2 π ln ( ω + 2 E f ) 2 ( ω 2 E f ) 2 + ( 2 k B T ) 2 ]
FOM bulk = S FWHM
S = λ n 1 1 e 2 d / l d

Metrics