Abstract

We developed two versions of refractometers to measure the refractive index of liquids. One refractometer comprises a glass cell with a surface relief grating on the inner face of one of its walls, while the other one is a microfluidic channel in the form of serpentine that behaves as a grating. Measurements of the liquid refractive index were performed by sensing the first order intensity. Several liquids have been used including an organic one. Calibration plots are shown.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids

Sergio Calixto, Neil C. Bruce, and Martha Rosete-Aguilar
Opt. Express 24(1) 180-190 (2016)

Immersed diffraction grating refractometers of liquids

L. F. G. Dib and E. A. Barbosa
Appl. Opt. 55(30) 8582-8588 (2016)

Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall

Víctor M. Durán-Ramírez, Alejandro Martínez-Ríos, J. Ascención Guerrero-Viramontes, Jesús Muñoz-Maciel, Francisco G. Peña-Lecona, Romeo Selvas-Aguilar, and Gilberto Anzueto-Sánchez
Opt. Express 22(24) 29899-29906 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Longhurst, Geometrical and physical optics (Longman, 1973).
  2. F. A. Jenkins and H. E. White, Fundamentals of optics (McGraw-Hill, 1975).
  3. K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeau, “Built-in-mask microfluidic chip for highly sensitive Young interferometer-based refractometer structure,” Procd. IEEE sensors conf.2164–2167 (2012).
  4. A. Branderburg, R. Krauter, C. Kunzel, M. Stefan, and H. Schutle, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39(34), 6396–6405 (2000).
    [Crossref]
  5. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
    [Crossref]
  6. H. Fujiwara, Spectroscopic Ellipsometry, Principles and Applications (Wiley, 2009).
  7. V. M. Duran-Ramirez, A. Martinez-Rios, J. A. Guerrero-Viramontes, J. Muñoz-Maciel, F. G. Peña-Leucona, R. Selvas-Aguilar, and G. Anzueto-Sanchez, “Measurement of refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall,” Opt. Express 22(24), 29899–29906 (2014).
    [Crossref]
  8. C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
    [Crossref]
  9. D. Donisi, R. Capulo, and G. Cennini, “Holographic grating based high sensitivity device for refractive index measurements,” Opt. Express 18(14), 15236–1541 (2010).
    [Crossref]
  10. B. M. Pixton and J. E. Greivenkamp, “Automated measurement of the refractive index of a liquid,” Appl. Opt. 47(10), 1504–1509 (2008).
    [Crossref]
  11. P. Liebetraut, P. H. Nguyen, P. Reith, B. Aatz, and H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52(14), 3203–3215 (2013).
    [Crossref]
  12. S. Calixto, M. Rosete-Aguilar, D. Monzon-hernandez, and V. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008).
    [Crossref]
  13. S. Calixto, M. Rosete-Aguilar, F. J. Sanches-Marin, M. Calixto-Solano, and C. Lopez-Mariscal, “Refractive index measurements through image analysis with an optofluidic device,” Opt. Express 20(3), 2073–2080 (2012).
    [Crossref]
  14. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidics channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref]
  15. S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
    [Crossref]
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd Edition, (McGraw-Hill, 1996).
  17. X. Jing and Y. Jin, “Transmittance analysis of diffraction phase grating,” Appl. Opt. 50(9), C11–C18A (2011).
    [Crossref]
  18. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
    [Crossref]
  19. Z. Sekkat and W. Knoll, Photoreactive organic thin films, (Academic Press, 2002)
  20. S. Calixto, “Albumen as a relief media for spatial distributions of infrared radiation. Fabrication of interference gratings and microlenses,” Appl. Opt. 42(2), 259–263 (2003).
    [Crossref]
  21. S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41(16), 3355–3361 (2002).
    [Crossref]
  22. Dow Corning, Silastic T-2 translucent Base and Silastic Curing agent. https://consumer.dow.com
  23. F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)
  24. A. R. Hawkins and H. Schmidt, Eds, Handbook of Optofluidics (CRC Press, 2010)
  25. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, 1966).
  26. I. Cilesiz and A. Katzir, “Coagulation of egg white by thermal feedback controlled CO2 laser,” Proc. SPIE 4161, 18–27 (2000).
    [Crossref]
  27. A. C. Hardy and F. H. Perrin, Principles of Optics, (McGraw-Hill, 1932)

2019 (1)

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

2015 (1)

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2008 (2)

2005 (1)

2003 (2)

2002 (1)

2000 (2)

I. Cilesiz and A. Katzir, “Coagulation of egg white by thermal feedback controlled CO2 laser,” Proc. SPIE 4161, 18–27 (2000).
[Crossref]

A. Branderburg, R. Krauter, C. Kunzel, M. Stefan, and H. Schutle, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39(34), 6396–6405 (2000).
[Crossref]

1999 (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Aatz, B.

Anzueto-Sanchez, G.

Bailey, J. E.

J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, 1966).

Branderburg, A.

Brittain, S. T.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Calixto, S.

Calixto-Solano, M.

Capulo, R.

Cennini, G.

Chaitavon, K.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeau, “Built-in-mask microfluidic chip for highly sensitive Young interferometer-based refractometer structure,” Procd. IEEE sensors conf.2164–2167 (2012).

Cilesiz, I.

I. Cilesiz and A. Katzir, “Coagulation of egg white by thermal feedback controlled CO2 laser,” Proc. SPIE 4161, 18–27 (2000).
[Crossref]

Donisi, D.

Duffy, D. C.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Duran-Ramirez, V. M.

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry, Principles and Applications (Wiley, 2009).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd Edition, (McGraw-Hill, 1996).

Greivenkamp, J. E.

Greve, J.

Guerrero-Viramontes, J. A.

Hardy, A. C.

A. C. Hardy and F. H. Perrin, Principles of Optics, (McGraw-Hill, 1932)

Hawkins, A. R.

A. R. Hawkins and H. Schmidt, Eds, Handbook of Optofluidics (CRC Press, 2010)

Heideman, R. G.

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of optics (McGraw-Hill, 1975).

Jin, Y.

Jing, X.

Kador, L.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Kanger, J. S.

Katzir, A.

I. Cilesiz and A. Katzir, “Coagulation of egg white by thermal feedback controlled CO2 laser,” Proc. SPIE 4161, 18–27 (2000).
[Crossref]

Knoll, W.

Z. Sekkat and W. Knoll, Photoreactive organic thin films, (Academic Press, 2002)

Krauter, R.

Kreger, K.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Kunzel, C.

Lambeck, P. V.

Lee, L. P.

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)

Li, S.-L.

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

Liebetraut, P.

Liu, C.

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

Longhurst, R. S.

R. S. Longhurst, Geometrical and physical optics (Longman, 1973).

Lopez-Mariscal, C.

Mansuripur, M.

Martinez-Rios, A.

Meichner, C.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Minkovich, V.

Monzon-hernandez, D.

Muñoz-Maciel, J.

Neuber, C.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Nguyen, P. H.

Nip, Z.-Q.

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

Nukeau, J.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeau, “Built-in-mask microfluidic chip for highly sensitive Young interferometer-based refractometer structure,” Procd. IEEE sensors conf.2164–2167 (2012).

Ollis, D. F.

J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, 1966).

Peña-Leucona, F. G.

Perrin, F. H.

A. C. Hardy and F. H. Perrin, Principles of Optics, (McGraw-Hill, 1932)

Peyghambarian, N.

Pixton, B. M.

Polynkin, A.

Polynkin, P.

Psaltis, D.

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)

Reith, P.

Rogers, J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Rosete-Aguilar, M.

Sanches-Marin, F. J.

Schedi, A. E.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Schmidt, H.

A. R. Hawkins and H. Schmidt, Eds, Handbook of Optofluidics (CRC Press, 2010)

Schueller, O. J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Schutle, H.

Sekkat, Z.

Z. Sekkat and W. Knoll, Photoreactive organic thin films, (Academic Press, 2002)

Selvas-Aguilar, R.

Stefan, M.

Sumriddetchkajorn, S.

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeau, “Built-in-mask microfluidic chip for highly sensitive Young interferometer-based refractometer structure,” Procd. IEEE sensors conf.2164–2167 (2012).

Tian, Y.-T.

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

Werner Schmidt, H.

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of optics (McGraw-Hill, 1975).

Whitesides, G. M.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Wijn, R.

Yang, C.

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)

Yeshaiahu, F.

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)

Ymeti, A.

Zappe, H.

AIP Adv. (1)

C. Meichner, A. E. Schedi, C. Neuber, K. Kreger, H. Werner Schmidt, and L. Kador, “Refractive index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns,” AIP Adv. 5(8), 087135 (2015).
[Crossref]

Appl. Opt. (8)

Micromachines (1)

S.-L. Li, Z.-Q. Nip, Y.-T. Tian, and C. Liu, “Liquid refractive index measurements system based on electro wetting lens,” Micromachines 10(8), 515 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

I. Cilesiz and A. Katzir, “Coagulation of egg white by thermal feedback controlled CO2 laser,” Proc. SPIE 4161, 18–27 (2000).
[Crossref]

Sens. Actuators (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators 78(2-3), 149–159 (1999).
[Crossref]

Other (11)

Z. Sekkat and W. Knoll, Photoreactive organic thin films, (Academic Press, 2002)

Dow Corning, Silastic T-2 translucent Base and Silastic Curing agent. https://consumer.dow.com

F. Yeshaiahu, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics Fundamentals, Devices, and Applications (McGraw Hill, 2010)

A. R. Hawkins and H. Schmidt, Eds, Handbook of Optofluidics (CRC Press, 2010)

J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, (McGraw-Hill, 1966).

R. S. Longhurst, Geometrical and physical optics (Longman, 1973).

F. A. Jenkins and H. E. White, Fundamentals of optics (McGraw-Hill, 1975).

K. Chaitavon, S. Sumriddetchkajorn, and J. Nukeau, “Built-in-mask microfluidic chip for highly sensitive Young interferometer-based refractometer structure,” Procd. IEEE sensors conf.2164–2167 (2012).

H. Fujiwara, Spectroscopic Ellipsometry, Principles and Applications (Wiley, 2009).

A. C. Hardy and F. H. Perrin, Principles of Optics, (McGraw-Hill, 1932)

J. W. Goodman, Introduction to Fourier Optics, 2nd Edition, (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Contrast of the 0th order intensity as a function of w/p.
Fig. 2.
Fig. 2. The relative intensity of the 1st order diffracted light as a function of w/p.
Fig. 3.
Fig. 3. Variation of intensities as a function of refractive index, for the experimental parameters.
Fig. 4.
Fig. 4. Sensitivity of the 0th and 1st diffractive orders to changes in the refractive index of the microchannels.
Fig. 5.
Fig. 5. First order normalized intensity as a function of liquid refractive index. The parameter is depth of the relief of each grating. Grating refractive index 1.40.
Fig. 6.
Fig. 6. (a) shows the first order intensity variation as a function of refractive index. The parameter is the illuminating wavelength. In these plots there is a line that passes through the inflexion point. Each line has a slope. (b) The slopes inclination (in degrees) is measured with respect to the horizontal axis in the counterclockwise direction. (c) Slope (in degrees) as a function of illuminating wavelength. The line shows the steepest slope when short wavelength (532 nm) is used. The opposite is true for the line when long wavelength (732 nm) is used. This means that sensitivity is better when short wavelengths are used.
Fig. 7.
Fig. 7. a) Profile of a silicone grating given by an Atomic Force Microscope. The grating was tilted at scanning time. b) Grating profile given by the AFM.
Fig. 8.
Fig. 8. Grating profiles given by a surface analyzer. They showed depths of 1 µm (a), 10 µm (b) and 37 µm (c).
Fig. 9.
Fig. 9. (i) Microfluidic serpentine. Channel width and inter-channel distance are 200 microns. (ii) Plain view of microfluidic channel: a = 198.5 µm, b = 196 µm and c = 198.3 µm. (iii) Channels side view. Heights are shown a = 39.4 µm, b = 39.7 µm and c = 605.5 µm.
Fig. 10.
Fig. 10. Diagram of a glass cell containing inside the chamber a surface relief grating and the liquid to be tested. Light beam path is shown.
Fig. 11.
Fig. 11. Photocomposite of the 3 central diffracted orders obtained when the solutions had the refractive index shown. Diffracted orders intensity increases and decreases with changes in refractive index.
Fig. 12.
Fig. 12. Behavior of first order intensity as a function of (a) refractive index, and (b) concentration, when different mixtures of water-glycerin were used. Grating depth modulation was 1 micron.
Fig. 13.
Fig. 13. First order intensity as a function of refractive index when two mixtures were tested water-glycerin (v) and water-TDE (b). Grating Depth modulation was 10 µm.
Fig. 14.
Fig. 14. (a) First order intensity versus Refractive Index. The red plot represents the behavior of intensity of the first order when mixtures of Water-TDE were analyzed while the blue plot corresponds to the Water-glycerin mixtures. (b) behavior of first order intensity as a function of the concentration of Water with TDE. Grating depth modulation 37 µm.
Fig. 15.
Fig. 15. Mixture refractive index as a function of the amount of pH10 solution when 2 ml of albumen was present in each sample.
Fig. 16.
Fig. 16. a) Diagram of the optical configuration used to find mixture refractive index when a microfluidic device is used. b) Photograph of the serpentine used in the experiments.
Fig. 17.
Fig. 17. (a) Normalized behavior of first order intensity as a function of refractive index, and (b) as a function of concentration when different mixtures of albumen and pH 10 buffer were used.

Tables (6)

Tables Icon

Table 1. Water- glycerine

Tables Icon

Table 3. Egg white-pH10 buffer

Tables Icon

Table 4. Sensitivities of gratings with different relief depths.

Tables Icon

Table 5. Dynamic range

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

U(x)=iAλexp(ikz)zT(x)exp(i2πxxλz)dx
T(x)=texp(iδφ)
δφ={φmpw/w22<x<mp+w/w220otherwise
φ=2πλh(n2n1)
U(x)=iAλexp(ikz)ztexp(iδφ)exp(i2πxxλz)dx
T(x)=t{1rect(xw)comb(xp)+exp(iφ)rect(xw)comb(xp)}
rect(xw)={1w/w22<x<w/w220otherwise
comb(xp)=pn=δ(xnp)
T(x)=t{1[1exp(iφ)]rect(xw)comb(xp)}
U(x)=iAλexp(ikz)zt×{1[1exp(iφ)]rect(xw)comb(xp)}exp(i2πxxλz)dx
U(x)=iAλexp(ikz)zt{δ(x)wp[δ(x)exp(iφ)δ(x)]sinc(xwλz)comb(xpλz)}
sinc(x)=sin(πx)πx
U(x)=iAλexp(ikz)zt{δ(x)wpsinc(xwλz)[1exp(iφ)]}comb(xpλz)
I(x)=I|δ(x)wpsinc(xwλz)[1exp(iφ)]|2
I0(x)=I|1wp [1exp(iφ)]|2=I0{1(wp(wp)2)2(1cosφ)}
I1(x)=I|wpsinc(wp)[1exp(iφ)]|2=I0(wp)2sinc2(wp)2(1cosφ)
I0=12(1+cos(kh(n2n1)))dI0dn=12(1khsin(kh(n2n1)))
I1=0.2(1cos(kh(n2n1)))dI1dn=0.2(1+khsin(kh(n2n1)))
P(I)=k=0nckIk

Metrics