Abstract

In order to address the vergence-accommodation conflict problem, a generalized model consisting of a human visual system for the 4D light field display system was proposed. This model includes the key factors, such as retinal resolution, the central depth plane (CDP), and the proposed spatial loss factor, for the light field display system. The spatial resolution of the target plane in the depth of field (DOF) were quantitatively evaluated based on the proposed model. The results showed that the inconsistency of spatial resolution in DOF results in unstable eye accommodation response. Based on the fovea resolution-limit, we evaluated and simulated the resolution of perceived images on retina and the accommodation response based on spatial loss factor. The simulation results verified that a near-eye light field display (NE-LFD) configuration with a spatial loss factor greater than 0.8, corresponding to 2 by 2 views, or a minimum spatial loss factor 0.6, corresponding to 3 by 3 views, has the ability to render a nearly correct focus cues and accommodation response.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of ray position sampling on the visual responses of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 27(7) 9343-9360 (2019)

Systematic method for modeling and characterizing multilayer light field displays

Mohan Xu and Hong Hua
Opt. Express 28(2) 1014-1036 (2020)

Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax

Peiren Wang, Xinzhu Sang, Xunbo Yu, Xin Gao, Binbin Yan, Boyang Liu, Li Liu, Chao Gao, Yang Le, Yuanhang Li, and Jingyan Du
Opt. Express 27(23) 34442-34453 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao and J. Xia, “Virtual viewpoints target via Fourier slice transformation,” J. Soc. Inf. Disp. 26(8), 463–469 (2018).
    [Crossref]
  2. J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
    [Crossref]
  3. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref]
  4. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital target,” Opt. Lett. 26(3), 157 (2001).
    [Crossref]
  5. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  6. H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
    [Crossref]
  7. J. Iskander, M. Hossny, and S. Nahavandi, “A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality,” IEEE Access 6, 19345–19361 (2018).
    [Crossref]
  8. Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  9. J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26(15), 19341–19355 (2018).
    [Crossref]
  10. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref]
  11. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  12. S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
    [Crossref]
  13. K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
    [Crossref]
  14. M. Liu, C. Lu, H. Li, and X. Liu, “Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display,” Opt. Express 26(4), 4060–4074 (2018).
    [Crossref]
  15. S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref]
  16. F. W. Campbell and G. Westheimer, “Dynamics of accomodation responses of the human eye,” Journal of Physiology-London 151(2), 285–295 (1960).
    [Crossref]
  17. W. N. Charman and H. Whitefoot, “Pupil Diameter and Depth-of-field of Human Eye as Measured by Laser Speckle,” Opt. Acta 24(12), 1211–1216 (1977).
    [Crossref]
  18. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref]
  19. G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
    [Crossref]
  20. Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
    [Crossref]
  21. H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  22. A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
    [Crossref]
  23. B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
    [Crossref]
  24. H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
    [Crossref]
  25. ZEMAX. Available: https://www.zemax.com/ .
  26. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881 (1999).
    [Crossref]
  27. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
    [Crossref]

2019 (3)

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
[Crossref]

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

2018 (7)

2017 (3)

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

2016 (1)

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

2012 (1)

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

2011 (1)

H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
[Crossref]

2010 (2)

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref]

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
[Crossref]

2006 (1)

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2001 (1)

1999 (1)

1995 (1)

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

1977 (1)

W. N. Charman and H. Whitefoot, “Pupil Diameter and Depth-of-field of Human Eye as Measured by Laser Speckle,” Opt. Acta 24(12), 1211–1216 (1977).
[Crossref]

1960 (1)

F. W. Campbell and G. Westheimer, “Dynamics of accomodation responses of the human eye,” Journal of Physiology-London 151(2), 285–295 (1960).
[Crossref]

Akeley, K.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Arimoto, H.

Balram, N.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Banks, M. S.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Benty, N.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Campbell, F. W.

F. W. Campbell and G. Westheimer, “Dynamics of accomodation responses of the human eye,” Journal of Physiology-London 151(2), 285–295 (1960).
[Crossref]

Charman, W. N.

W. N. Charman and H. Whitefoot, “Pupil Diameter and Depth-of-field of Human Eye as Measured by Laser Speckle,” Opt. Acta 24(12), 1211–1216 (1977).
[Crossref]

Chen, Y.-T.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Cheng, D.

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref]

Cho, J.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Chou, P.-Y.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

Drucker, S.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Du, B.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

Escudero-Sanz, I.

Finch, M.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Greivenkamp, E.

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Guenter, B.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

Hoffman, D. M.

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
[Crossref]

Hossny, M.

J. Iskander, M. Hossny, and S. Nahavandi, “A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality,” IEEE Access 6, 19345–19361 (2018).
[Crossref]

Hua, H.

H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
[Crossref]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref]

H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref]

Huang, C.-T.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Huang, H.

Huang, Y.-P.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Iskander, J.

J. Iskander, M. Hossny, and S. Nahavandi, “A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality,” IEEE Access 6, 19345–19361 (2018).
[Crossref]

Jang, C.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Javidi, B.

Jo, Y.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Juttner, M.

H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
[Crossref]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

Kaplanyan, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Kim, D.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Kim, J.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Kim, Y. K.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Lee, B.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Lee, J. S.

Lee, S.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

Lee, Y. H.

Lefohn, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Li, H.

Liu, M.

Liu, S.

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref]

Liu, X.

Lu, C.

Luebke, D.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Ma, Q.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

MacKenzie, K. J.

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Mellinger, M. D.

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Miller, J. M.

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Nahavandi, S.

J. Iskander, M. Hossny, and S. Nahavandi, “A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality,” IEEE Access 6, 19345–19361 (2018).
[Crossref]

Navarro, R.

Patney, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Qin, Z.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Rentschler, I.

H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
[Crossref]

Salvi, M.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Schwiegerling, J.

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

Snyder, J.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Strasburger, H.

H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
[Crossref]

Takaki, Y.

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Tan, D.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Tan, G.

Watt, S. J.

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Westheimer, G.

F. W. Campbell and G. Westheimer, “Dynamics of accomodation responses of the human eye,” Journal of Physiology-London 151(2), 285–295 (1960).
[Crossref]

Whitefoot, H.

W. N. Charman and H. Whitefoot, “Pupil Diameter and Depth-of-field of Human Eye as Measured by Laser Speckle,” Opt. Acta 24(12), 1211–1216 (1977).
[Crossref]

Won, Y. H.

Wu, J.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

Wu, J.-Y.

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

Wu, S. T.

Wyman, C.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Xia, J.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

J. Zhao and J. Xia, “Virtual viewpoints target via Fourier slice transformation,” J. Soc. Inf. Disp. 26(8), 463–469 (2018).
[Crossref]

Yang, J.

Zhan, T.

Zhang, H.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

Zhao, D.

Zhao, J.

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

J. Zhao and J. Xia, “Virtual viewpoints target via Fourier slice transformation,” J. Soc. Inf. Disp. 26(8), 463–469 (2018).
[Crossref]

ACM Trans. Graph. (4)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D Graphics,” ACM Trans. Graph. 31(6), 1 (2012).
[Crossref]

Am. J. Ophthalmol. (1)

E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

IEEE Access (2)

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays,” IEEE Access 6, 2170–2180 (2018).
[Crossref]

J. Iskander, M. Hossny, and S. Nahavandi, “A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality,” IEEE Access 6, 19345–19361 (2018).
[Crossref]

IEEE Photonics J. (1)

J. Zhao, Q. Ma, J. Xia, J. Wu, B. Du, and H. Zhang, “Hybrid Computational Near-Eye Light Field Display,” IEEE Photonics J. 11(1), 1–10 (2019).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref]

J Vis. (2)

K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J Vis. 10(8), 22 (2010).
[Crossref]

H. Strasburger, I. Rentschler, and M. Juttner, “Peripheral vision and pattern recognition: a review,” J Vis. 11(5), 13 (2011).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

Z. Qin, Z. Qin, P.-Y. Chou, J.-Y. Wu, Y.-T. Chen, C.-T. Huang, N. Balram, and Y.-P. Huang, “Image formation modeling and analysis of near-eye light field displays,” J. Soc. Inf. Disp. 27(4), 238–250 (2019).
[Crossref]

J. Zhao and J. Xia, “Virtual viewpoints target via Fourier slice transformation,” J. Soc. Inf. Disp. 26(8), 463–469 (2018).
[Crossref]

Journal of Physiology-London (1)

F. W. Campbell and G. Westheimer, “Dynamics of accomodation responses of the human eye,” Journal of Physiology-London 151(2), 285–295 (1960).
[Crossref]

Opt. Acta (1)

W. N. Charman and H. Whitefoot, “Pupil Diameter and Depth-of-field of Human Eye as Measured by Laser Speckle,” Opt. Acta 24(12), 1211–1216 (1977).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. IEEE (2)

H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Y. Takaki, “High-Density Directional Display for Generating Natural Three-Dimensional Images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Other (1)

ZEMAX. Available: https://www.zemax.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A schematic layout of a generalized monocular NE-LFD, which mainly consists of visual characteristics of retina and CDP rendered by modulated display system. (b) natural vision, (c) conventional near-eye display, (d) Multi-layer display, (e) Integrated imaging (II)-based light field display, (f) accommodation error and shift depth, (g) the contrast of perceived images and shift depth.
Fig. 2.
Fig. 2. Schematic of the configuration of the proposed generalized model.
Fig. 3.
Fig. 3. Plot of the spatial loss factor as a function of the depth shift of reconstruction from CDP from −1D to 1D.
Fig. 4.
Fig. 4. Plot of RSSR as a function of (a) the number of viewpoints from 1 by 1 to 5 by 5, (b) the five different reconstructed depth Δz: −100mm, −50mm, 0mm, 50mm, and 100mm (c) the depth shift of reconstruction from CDP, corresponding to CDP @ 4D, 2D, 1D, 0.5D, and 0D. (d) the depth shift of accommodation from CDP, corresponding to CDP @ 1D, 0.5D, 0.3D, 0.25D, and 0.2D.
Fig. 5.
Fig. 5. Plot of RSSR as a function of the depth shift of accommodation from CDP from 0 mm to 50mm, corresponding to (a) 2 by 2 views and (b) 3 by 3 views.
Fig. 6.
Fig. 6. 3 by 3 views with spatial loss factor: 0.9, 0.8, 0.7, 0.6, and 0.5. (Unit is millimeter)
Fig. 7.
Fig. 7. 2 by 2 views with spatial loss factor: 0.9, and 0.8. (Unit is millimeter)

Tables (1)

Tables Icon

Table 1. The structure parameters of this system

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p C D P = z C D P d l p
p Δ z = { w l z C D P Δ z + z C D P + Δ z z C D P M P , Δ z 0 w l z C D P Δ z + z C D P Δ z z C D P M P , Δ z > 0
η = N Δ z N p = 2 z Δ z tan ( α / 2 ) p Δ z 2 z C D P tan ( α / 2 ) p C D P = z Δ z p C D P z C D P p Δ z
u n  = (n -  N 1 2 ) Δ u ;
x n = d m Δ z + h z C D P z C D P + Δ z ;
S n = u n T re t i n a T p u p i l [ u n α n ]
S Δ z = ( max( S n ) min ( S n ) ) | n [ 1 , N ] , Δ u [ 0 , D ]

Metrics