Abstract

Parabolic pulses with linear self-phase-modulation-induced frequency chirp are attractive in ultrafast laser fiber amplification system for the functionality of nonlinearities suppression. In this paper, we present an effective way of parabolic pulse evolution by passive spectral amplitude shaping with a pair of chirped fiber Bragg gratings (CFBG). By this approach, a high-energy high-peak-power Yb-doped fiber chirped pulse amplification (CPA) system is demonstrated. The oscillator is a dispersion-managed passively mode-locked Yb-doped fiber laser with a broadband Gaussian-shaped spectrum which is evolved to parabola in a following preamplifier with pre-chirping management by a CFBG compressor. The pulses are then stretched with a CFBG stretcher, based on frequency-to-time mapping, the temporal profiles of the pulses show an identical parabolic envelope to the spectrum. The shaped pulses are further amplified with three stages of all-fiber amplifiers and compressed by a grating-pair compressor. The pulse duration is compressed to 172 fs with a pulse energy of 27 µJ. The central pulse encompasses 72% of total pulse energy, corresponding to a pulse peak power of 113 MW. No obvious pulse degeneration is noticed at nonlinearity accumulation B-integral as high as 12 rad. This configuration shows a significant potential for nonlinearity tolerance in high-energy operation compared with conventional CPA system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum

Damian N. Schimpf, Jens Limpert, and Andreas Tünnermann
Opt. Express 15(25) 16945-16953 (2007)

High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating

Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang
Opt. Express 24(20) 22806-22812 (2016)

Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser

Zhengqi Ren, Qiang Fu, Lin Xu, Jonathan H. V. Price, Shaif-ul Alam, and David J. Richardson
Opt. Express 27(25) 36741-36749 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  2. W Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
    [Crossref]
  3. G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
    [Crossref]
  4. Zhigang Zhao and Yohei Kobayashi, “Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz,” Opt. Express 25(12), 13517–13526 (2017).
    [Crossref]
  5. Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
    [Crossref]
  6. Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
    [Crossref]
  7. Damian N. Schimpf, Enrico Seise, Jens Limpert, and Andreas Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17(7), 4997–5007 (2009).
    [Crossref]
  8. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett. 19(24), 2149–2151 (1994).
    [Crossref]
  9. F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
    [Crossref]
  10. S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).
  11. Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
    [Crossref]
  12. J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis, “Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber,” Opt. Express 21(5), 5338–5345 (2013).
    [Crossref]
  13. C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
    [Crossref]
  14. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref]
  15. Huanyu Song, Bowen Liu, Yang Li, Youjian Song, Hao He, Lu Chai, Minglie Hu, and Chingyue Wang, “Practical 24-fs, 1-µJ, 1-MHz Yb-fiber laser amplification system,” Opt. Express 25(7), 7559–7566 (2017).
    [Crossref]
  16. Walter Fu, Yuxing Tang, Timothy S. McComb, Tyson L. Lowder, and Frank W. Wise, “Limits of femtosecond fiber amplification by parabolic pre-shaping,” J. Opt. Soc. Am. B 34(3), A37–A42 (2017).
    [Crossref]
  17. Sijia Wang, Bowen Liu, Chenglin Gu, Youjian Song, Cheng Qian, Minglie Hu, Lu Chai, and Chingyue Wang, “Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping,” Opt. Lett. 38(3), 296–298 (2013).
    [Crossref]
  18. Jian Zhao, Wenxue Li, Chao Wang, Yang Liu, and Heping Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
    [Crossref]
  19. Jerry Prawiharjo, Nikita K. Daga, Rui Geng, Jonathan H. V. Price, David C. Hanna, David J. Richardson, and David P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16(19), 15074–15089 (2008).
    [Crossref]
  20. Jeonghyun Huh and José Azaña, “Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping,” Opt. Express 23(21), 27751–27762 (2015).
    [Crossref]
  21. Dat Nguyen, Mohammad Umar Piracha, and Peter J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five-time increase in peak power,” Opt. Lett. 37(23), 4913–4915 (2012).
    [Crossref]
  22. Damian N. Schimpf, Jens Limpert, and Andreas Tünnermann, “Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15(25), 16945–16953 (2007).
    [Crossref]
  23. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
    [Crossref]
  24. C. Jirauschek and F. Ömer Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83(6), 063809 (2011).
    [Crossref]
  25. Christophe Finot, Francesca Parmigiani, Periklis Petropoulos, and David J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14(8), 3161–3170 (2006).
    [Crossref]
  26. Huanyu Song, Bowen Liu, Wei Chen, Yuan Li, Youjian Song, Sijia Wang, Lu Chai, Chingyue Wang, and Minglie Hu, “Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses,” Opt. Express 26(20), 26411–26421 (2018).
    [Crossref]

2019 (1)

C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
[Crossref]

2018 (3)

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Huanyu Song, Bowen Liu, Wei Chen, Yuan Li, Youjian Song, Sijia Wang, Lu Chai, Chingyue Wang, and Minglie Hu, “Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses,” Opt. Express 26(20), 26411–26421 (2018).
[Crossref]

2017 (3)

2016 (3)

Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
[Crossref]

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (2)

2012 (1)

2011 (1)

C. Jirauschek and F. Ömer Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83(6), 063809 (2011).
[Crossref]

2009 (1)

2008 (3)

2007 (1)

2006 (1)

2002 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

1994 (1)

Azaña, José

Brunette, I.

Chai, Lu

Chang, H.

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Chen, Jinbao

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

Chen, Wei

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Daga, Nikita K.

Danilevicius, R.

Delfyett, Peter J.

Ditmire, T.

Dongchen, J.

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Dudley, J. M.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Fang, Shaobo

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Fangzhou, T.

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Finot, Christophe

Fu, Walter

Geng, Rui

Giguère, D.

Gu, Chenglin

Hanna, David C.

Hao, Teng

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

He, Hao

Hong, Chang

Hu, Minglie

Hu, Zhongqi

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Huh, Jeonghyun

Jin, Dongchen

Jirauschek, C.

C. Jirauschek and F. Ömer Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83(6), 063809 (2011).
[Crossref]

Kazansky, P. G.

W Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Kieffer, J.-C.

Kobayashi, Yohei

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461–469 (2002).
[Crossref]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Li, F.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Li, Q.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Li, Wenxue

Li, Yang

Li, Yuan

Limpert, Jens

Liu, Bowen

Liu, Jiang

Liu, Yang

Lowder, Tyson L.

Mancheea, C. P. K.

C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
[Crossref]

McComb, Timothy S.

Miller, R. J. D.

C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
[Crossref]

Möllerb, J.

C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
[Crossref]

Nada, O.

Nguyen, Dat

Olivié, G.

Ömer Ilday, F.

C. Jirauschek and F. Ömer Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83(6), 063809 (2011).
[Crossref]

Ozaki, T.

Parmigiani, Francesca

Peacock, A. C.

Perry, M. D.

Petropoulos, Periklis

Piracha, Mohammad Umar

Prawiharjo, Jerry

Price, Jonathan H. V.

Pu, W.

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Qian, Cheng

Regelskis, K.

Richardson, David J.

Ruoyu, S.

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

Rusteika, N.

Schimpf, Damian N.

Seise, Enrico

Shepherd, David P.

Song, Huanyu

Song, Youjian

Stuart, B. C.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, Ruoyu

Svirko, Y. P.

W Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Tan, Fangzhou

Tang, Yuxing

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Tünnermann, Andreas

Vidal, F.

Viskontas, K.

Wang, Chao

Wang, Chingyue

Wang, Junli

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Wang, Pu

Wang, Sijia

Wang, Xiaolin

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

Wang, Y.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Wei, Shouyu

Wei, Zhiyi

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Wise, Frank W.

Xu, Jia

Yang, Peilong

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Yang, W

W Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Yang, X.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yang, Z.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yu, Hailong

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

Želudevicius, J.

Zeng, Heping

Zhang, Pengfei

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

Zhang, W.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhang, X.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhao, Jian

Zhao, W.

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhao, Zhigang

Zhou, Pu

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

Zhu, Jiangfeng

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

Peilong Yang, Teng Hao, Zhongqi Hu, Shaobo Fang, Junli Wang, Jiangfeng Zhu, and Zhiyi Wei, “Highly stable Yb-fiber laser amplifier of delivering 32-µJ, 153-fs pulses at 1-MHz repetition rate,” Appl. Phys. B: Lasers Opt. 124(8), 169–174 (2018).
[Crossref]

Chinese Journal of Lasers (1)

S. Ruoyu, T. Fangzhou, J. Dongchen, H. Chang, and W. Pu, “1 µm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave,” Chinese Journal of Lasers 45(1), 1–6 (2018).

IEEE Photonics J. (2)

F. Li, Z. Yang, W. Zhao, Q. Li, X. Zhang, X. Yang, W. Zhang, and Y. Wang, “50 µJ femtosecond laser system based on strictly all-fiber CPA structure,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Hailong Yu, Pengfei Zhang, Xiaolin Wang, Pu Zhou, and Jinbao Chen, “High-Average-Power Polarization Maintaining All-Fiber-Integrated Nonlinear Chirped Pulse Amplification System Delivering Sub-400 fs Pulses,” IEEE Photonics J. 8(2), 1–7 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Light: Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nat. Photonics (1)

W Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Opt. Commun. (1)

C. P. K. Mancheea, J. Möllerb, and R. J. D. Miller, “Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier,” Opt. Commun. 437, 6–10 (2019).
[Crossref]

Opt. Express (12)

J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis, “Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber,” Opt. Express 21(5), 5338–5345 (2013).
[Crossref]

Jian Zhao, Wenxue Li, Chao Wang, Yang Liu, and Heping Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref]

Jerry Prawiharjo, Nikita K. Daga, Rui Geng, Jonathan H. V. Price, David C. Hanna, David J. Richardson, and David P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16(19), 15074–15089 (2008).
[Crossref]

Jeonghyun Huh and José Azaña, “Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping,” Opt. Express 23(21), 27751–27762 (2015).
[Crossref]

G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
[Crossref]

Zhigang Zhao and Yohei Kobayashi, “Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz,” Opt. Express 25(12), 13517–13526 (2017).
[Crossref]

Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang, “High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating,” Opt. Express 24(20), 22806–22812 (2016).
[Crossref]

Damian N. Schimpf, Enrico Seise, Jens Limpert, and Andreas Tünnermann, “Self-phase modulation compensated by positive dispersion in chirped-pulse systems,” Opt. Express 17(7), 4997–5007 (2009).
[Crossref]

Christophe Finot, Francesca Parmigiani, Periklis Petropoulos, and David J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14(8), 3161–3170 (2006).
[Crossref]

Huanyu Song, Bowen Liu, Wei Chen, Yuan Li, Youjian Song, Sijia Wang, Lu Chai, Chingyue Wang, and Minglie Hu, “Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses,” Opt. Express 26(20), 26411–26421 (2018).
[Crossref]

Huanyu Song, Bowen Liu, Yang Li, Youjian Song, Hao He, Lu Chai, Minglie Hu, and Chingyue Wang, “Practical 24-fs, 1-µJ, 1-MHz Yb-fiber laser amplification system,” Opt. Express 25(7), 7559–7566 (2017).
[Crossref]

Damian N. Schimpf, Jens Limpert, and Andreas Tünnermann, “Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15(25), 16945–16953 (2007).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

C. Jirauschek and F. Ömer Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83(6), 063809 (2011).
[Crossref]

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the high energy femtosecond fiber CPA system. SESAM, semiconductor saturable absorber mirror; LD, laser diode; WDM, wavelength division multiplex; CFBG, chirped fiber Bragg grating; ISO, isolator; PM, polarization maintaining; Yb-SMF, ytterbium-doped single mode fiber; DCF, double-clad fiber; DDPG, digital delay and pulse generator; AOM, acoustic optical modulator; DM, dichromic mirror; F, focusing lens; HR, high reflecting mirror; HWP, half wave plate.
Fig. 2.
Fig. 2. (a) The autocorrelation trace of the oscillator. (b) the mode-locked pulse train with the repetition rate of 18.52 MHz. (c) The spectrum of the dispersion-managed mode-locked oscillator.
Fig. 3.
Fig. 3. (a) The spectral intensity monitored after the cladding-pumped amplifier versus different pump power (colored line), parabolic fitting of the spectral profile at 370 mW pump power (dot red). (b) The autocorrelation trace of the compressed pulse after spectral shaping.
Fig. 4.
Fig. 4. The temporal profiles (dashed blue) of pulse and parabolic fitting (dot red) at different positions of the fiber amplifiers. (a) after CFBG stretcher, (b) after 6/125 amplifier and (c) after 10/125 amplifier; (d), (e) and (f) the corresponding optical spectrum of the pulse measured with 0.1 nm spectrum resolution.
Fig. 5.
Fig. 5. (a) Average output power of the main amplifier versus the change of pump power, experimental data (blue dot), linear fitting (solid red). (b) The optical spectrum at different pulse energy. (c) M2 measurements, beam diameters as a function of distance from laser beam waists (red, black dot), measured power stability in 2 hours (solid blue).
Fig. 6.
Fig. 6. Retrieval temporal intensity profile of the compressed pulse (solid red) and the temporal phase (dashed blue) obtained from the SHG-FROG measurement.
Fig. 7.
Fig. 7. (a) (b) and (c) AC traces at pulse energy of 5 µJ, 15 µJ and 35 µJ with Gaussian-shaped spectrum (M = 0.07); (d) (e) and (f) AC traces at pulse energy of 5 µJ, 15 µJ and 35 µJ of a parabolic- shaped spectrum (M = 0.048).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M 2 = [ | ψ | 2 | ψ P F I T | 2 ] 2 d t / [ | ψ | 2 | ψ P F I T | 2 ] 2 d t | ψ | 4 d t | ψ | 4 d t .

Metrics