Abstract

A miniature resonator sensor based on a hybrid plasmonic nanoring with a gold layer coated uniformly on the outer boundary is described and investigated. By using the Lumerical finite-difference-time-domain (FDTD) method, the optimized sizes of the plasmonic layer thickness and the central hole are given and insight into the dependence of spectral displacements, Q factors, sensitivity and detection limits on the ambient refractive index is presented. Simulation results reveal that the miniature resonator sensor featuring high sensitivity of 339.8 nm/RIU can be realized. The highest Q factor can reach ∼60,000 with this nanoring and the minimum detection limit is as low as 1.5 × 10−4 RIU. The effects on the resonance shifts and Q factors due to geometric shapes of the inner boundary of the nanoring are discussed as well. This miniature resonator sensor has good potential for highly sensitive ultracompact sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors

Mehrnoosh Salemizadeh, Fatemeh Fouladi Mahani, and Arash Mokhtari
J. Opt. Soc. Am. B 36(3) 786-793 (2019)

Silicon hybrid plasmonic microring resonator for sensing applications

Meng Zhang, Genzhu Wu, and Daru Chen
Appl. Opt. 54(23) 7131-7134 (2015)

Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance

JunJun Wu, Shuguang Li, Xinyu Wang, Min Shi, Xinxing Feng, and Yundong Liu
Appl. Opt. 57(15) 4002-4007 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  2. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
    [Crossref]
  3. Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
    [Crossref]
  4. P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using a dual polarization ring,” Appl. Opt. 55(13), 3537–3541 (2016).
    [Crossref]
  5. H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “High-frequency ultrasonic sensor arrays based on optical micro-ring resonators,” in Health Monitoring of Structural and Biological Systems XII, (International Society for Optics and Photonics, 2018), p. 1060003.
  6. X. Wang, X. Guan, Q. Huang, J. Zheng, Y. Shi, and D. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38(24), 5405–5408 (2013).
    [Crossref]
  7. H. Deng, W. Zhang, and J. Yao, “High-Speed and High-Resolution Interrogation of a Silicon Photonic Microdisk Sensor Based on Microwave Photonic Filtering,” J. Lightwave Technol. 36(19), 4243–4249 (2018).
    [Crossref]
  8. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
    [Crossref]
  9. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
    [Crossref]
  10. H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
    [Crossref]
  11. H. Wei and S. Krishnaswamy, “Direct laser writing polymer micro-resonators for refractive index sensors,” IEEE Photon. Technol. Lett. 28(24), 2819–2822 (2016).
    [Crossref]
  12. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [Crossref]
  13. K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006).
    [Crossref]
  14. S. A. Maier, Plasmonics: fundamentals and applications. (Springer Science & Business Media, 2007).
  15. Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
    [Crossref]
  16. M. Zhang, G. Wu, and D. Chen, “Silicon hybrid plasmonic microring resonator for sensing applications,” Appl. Opt. 54(23), 7131–7134 (2015).
    [Crossref]
  17. D. Urbonas, A. Balčytis, M. Gabalis, K. Vaškevičius, G. Naujokaitė, S. Juodkazis, and R. Petruškevičius, “Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks,” Opt. Lett. 40(13), 2977–2980 (2015).
    [Crossref]
  18. Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
    [Crossref]
  19. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
    [Crossref]
  20. A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
    [Crossref]
  21. L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
    [Crossref]
  22. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
    [Crossref]
  23. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
    [Crossref]
  24. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
    [Crossref]
  25. A. M. Zaitsev, Optical properties of diamond: a data handbook (Springer Science & Business Media, 2013).
  26. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2(10), 911–928 (2014).
    [Crossref]
  27. W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
    [Crossref]
  28. A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [Crossref]
  29. D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
    [Crossref]
  30. M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [Crossref]
  31. A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [Crossref]
  32. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
    [Crossref]
  33. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
    [Crossref]
  34. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
    [Crossref]
  35. A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
    [Crossref]
  36. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [Crossref]

2019 (1)

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

2018 (7)

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Deng, W. Zhang, and J. Yao, “High-Speed and High-Resolution Interrogation of a Silicon Photonic Microdisk Sensor Based on Microwave Photonic Filtering,” J. Lightwave Technol. 36(19), 4243–4249 (2018).
[Crossref]

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

2017 (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

2016 (2)

H. Wei and S. Krishnaswamy, “Direct laser writing polymer micro-resonators for refractive index sensors,” IEEE Photon. Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using a dual polarization ring,” Appl. Opt. 55(13), 3537–3541 (2016).
[Crossref]

2015 (4)

2014 (3)

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2(10), 911–928 (2014).
[Crossref]

2013 (2)

2012 (1)

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

2011 (4)

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

2009 (1)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

2008 (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
[Crossref]

M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref]

2006 (3)

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
[Crossref]

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006).
[Crossref]

2005 (1)

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Aharonovich, I.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2(10), 911–928 (2014).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Ameen, A.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

Amrithanath, A. K.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “High-frequency ultrasonic sensor arrays based on optical micro-ring resonators,” in Health Monitoring of Structural and Biological Systems XII, (International Society for Optics and Photonics, 2018), p. 1060003.

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
[Crossref]

Baba, T.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006).
[Crossref]

Balcytis, A.

Barchiesi, D.

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Bedu, F.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Bender, C. M.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Bhansali, S.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Bo, F.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Chen, D.

Chen, Y.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Cui, J.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Dai, D.

Danilov, A.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Dar, F. K.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

de La Chapelle, M. L.

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Deng, H.

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Fu, K. C.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Gabalis, M.

Gerislioglu, B.

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Goddard, L. L.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

Gong, Q.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Grigorenko, A. N.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Grimault, A.

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Guan, X.

Guo, L. J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Hackett, L. P.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

Han, B.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

He, S.

Hentschel, M.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
[Crossref]

Huang, Q.

Ji, Y.

Juodkazis, S.

Kabashin, A. V.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
[Crossref]

Kong, Y.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Kravets, V. G.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Krishnaswamy, S.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct laser writing polymer micro-resonators for refractive index sensors,” IEEE Photon. Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “High-frequency ultrasonic sensor arrays based on optical micro-ring resonators,” in Health Monitoring of Structural and Biological Systems XII, (International Society for Optics and Photonics, 2018), p. 1060003.

Li, B.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Li, W.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

Li, Y.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Liertzer, M.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Liu, G. L.

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

Liu, P.

Liu, Y.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Macías, D.

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Mahamd Adikan, F. R.

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Mahdiraji, G. A.

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: fundamentals and applications. (Springer Science & Business Media, 2007).

Manickam, P.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Monifi, F.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Nair, M.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Naujokaite, G.

Neu, E.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2(10), 911–928 (2014).
[Crossref]

Ng, W. L.

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Nozaki, K.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006).
[Crossref]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Ozdemir, S. K.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Ozerov, I.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Pala, N.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Peng, B.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Petruškevicius, R.

Qiu, M.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

Quan, Q.

Ramezani, Z.

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

Rifat, A. A.

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Rotter, S.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Russell, P. S. J.

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Schmidt, M. A.

Shi, Y.

Song, Y.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref]

Thylen, L.

Tian, H.

Tomitaka, A.

Tselikov, G.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Urbonas, D.

Vahala, K. J.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Vaškevicius, K.

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Vial, A.

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
[Crossref]

Wang, J.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

Wang, X.

Wei, H.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct laser writing polymer micro-resonators for refractive index sensors,” IEEE Photon. Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “High-frequency ultrasonic sensor arrays based on optical micro-ring resonators,” in Health Monitoring of Structural and Biological Systems XII, (International Society for Optics and Photonics, 2018), p. 1060003.

Wiersig, J.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
[Crossref]

Wong, W. R.

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Wosinski, L.

Wu, F.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

Wu, G.

Xiao, Y.

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Xu, J.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Yan, M.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

Yang, D.

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Yang, L.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Yao, J.

Yilmaz, H.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Zaitsev, A. M.

A. M. Zaitsev, Optical properties of diamond: a data handbook (Springer Science & Business Media, 2013).

Zhang, A.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

Zhang, G.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Zhang, M.

Zhang, W.

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Zhang, Y. N.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

Zhao, Y.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

Zheng, J.

Zhou, T.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

ACS Sens. (2)

L. P. Hackett, A. Ameen, W. Li, F. K. Dar, L. L. Goddard, and G. L. Liu, “Spectrometer-Free Plasmonic Biosensing with Metal–Insulator–Metal Nanocup Arrays,” ACS Sens. 3(2), 290–298 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Adv. Mater. (1)

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Adv. Opt. Mater. (1)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2(10), 911–928 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photon. Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct laser writing polymer micro-resonators for refractive index sensors,” IEEE Photon. Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanoscale (2)

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

Nat. Photonics (2)

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. J. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (2)

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, New York.
[Crossref]

Y. Xiao, Y. Liu, B. Li, Y. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Phys. Rev. B (1)

A. Vial, A. Grimault, D. Macías, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Plasmonics (1)

W. L. Ng, A. A. Rifat, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Proc. Natl. Acad. Sci. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008).
[Crossref]

Science (1)

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346(6207), 328–332 (2014).
[Crossref]

Other (3)

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “High-frequency ultrasonic sensor arrays based on optical micro-ring resonators,” in Health Monitoring of Structural and Biological Systems XII, (International Society for Optics and Photonics, 2018), p. 1060003.

S. A. Maier, Plasmonics: fundamentals and applications. (Springer Science & Business Media, 2007).

A. M. Zaitsev, Optical properties of diamond: a data handbook (Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic and (b) cross section view (purple rectangular in (a)) of the studied PDNR.
Fig. 2.
Fig. 2. WGM field distributions in (a) the bare diamond nanodisk and (b) the studied PDNR, respectively. (c) Cross-sectional field distribution of a fundamental WGM in the studied PDNR.
Fig. 3.
Fig. 3. (a) Resonance wavelength versus ARI for different gold thickness wAu. (b) Resonance shift and the sensitivity versus wAu. (c) Intensity spectrum of the diamond plasmonic nanodisk for wAu=20 nm when ARI changes from 1.0 to 1.5 obtained by 2D FDTD simulation. Inset: the zoom-in graph of the region highlighted by the purple rectangle.
Fig. 4.
Fig. 4. Resonance wavelength versus ARI for the proposed PDNR and plasmonic diamond nanodisk with different wAu. Inset: the schematic of the structure for different graphs.
Fig. 5.
Fig. 5. (a) Q factors and the sensitivity versus width of diamond nanoring wD. Inset: the schematic of the PDNR. (b) The intensity spectrum at the resonance wavelength and the cross-sectional field intensity when ARI=1.3, 1.4 and 1.5 highlighted by the left brown dotted rectangle in (a) for wD =0.2R and (c) right brown dotted rectangle in (a) for wD =0.3R.
Fig. 6.
Fig. 6. Detection limits versus wD.
Fig. 7.
Fig. 7. Schemes of the proposed PDNR with central holes of octagonal, dodecagonal, hexadecagonal and icosagonal prisms.
Fig. 8.
Fig. 8. (a) Resonance wavelengths versus ARI and (b) resonance shifts for the proposed PDNR versus holes of octagonal, dodecagonal, hexadecagonal and icosagonal prisms.
Fig. 9.
Fig. 9. Q factors for the proposed PDNR with holes of octagonal, dodecagonal, hexadecagonal and icosagonal prisms versus ARI.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε A u = ε ω D 2 ω ( ω + j γ D ) Δ ε Ω L 2 ( ω 2 Ω L 2 ) + j Γ L ω ,
λ = 2 π r n e f f m ,
Δ ω ω α e x | E ( r d ) | 2 2 ε ( r ) | E ( r d ) | 2 d V m ,
T 2 = 2 / Δ ν F W H M = 2 Δ λ F W H M / c ,
Q = λ r e s τ = λ r e s λ F W H M ,
S = d λ / d n .
D L = λ r e s Q S ,

Metrics