Abstract

High-birefringence liquid crystal (LC) in ultrathin LCOS panels was adopted to prepare high phase precision (mSTD =λ/50) and phase accuracy (mAPAE% ∼8%) with suppressed pixel-level crosstalk effects. In conjunction with optimized digital driving scheme, the zero order light loss was found directly related to the phase accuracy error. Meanwhile, the world’s fastest pure phase modulation LCOS with a response time of ∼0.87 ms at 45 °C was also achieved. The low-temporal flicker (PP ∼2.0%) with high-speed LC responses was demonstrated by applying new digital driving scheme. Finally, the 4K2 K LCOS–SLM (∼7000 PPI) was evaluated its difficulties and opportunities.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase flicker optimisation in digital liquid crystal on silicon devices

H. Yang and D. P. Chu
Opt. Express 27(17) 24556-24567 (2019)

Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators

Simon Moser, Monika Ritsch-Marte, and Gregor Thalhammer
Opt. Express 27(18) 25046-25063 (2019)

Improvements of phase linearity and phase flicker of phase-only LCoS devices for holographic applications

Yuan Tong, Mike Pivnenko, and Daping Chu
Appl. Opt. 58(34) G248-G255 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  2. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
    [Crossref]
  3. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
    [Crossref]
  4. Z. He, G. Tan, D. Chanda, and S. T. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
    [Crossref]
  5. H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
    [Crossref]
  6. Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
    [Crossref]
  7. M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
    [Crossref]
  8. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
    [Crossref]
  9. A. Linnenberger, “Advanced SLMs for Microscopy,” Proc. SPIE 10502, 1050204 (2018).
    [Crossref]
  10. G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
    [Crossref]
  11. T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
    [Crossref]
  12. T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
    [Crossref]
  13. X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
    [Crossref]
  14. Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
    [Crossref]
  15. Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
    [Crossref]
  16. G. Lazarev, P. J. Chen, J. Strauss, N. Fontaine, and A. Forbes, “Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics,” Opt. Express 27(11), 16206–16249 (2019).
    [Crossref]
  17. J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
    [Crossref]
  18. A. Márquez, F. J. Martínez-Guardiola, J. Francés, S. Gallego, I. Pascual, and A. Beléndez, “Combining average molecular tilt and flicker for management of depolarized light in parallel-aligned liquid crystal devices for broadband and wide-angle illumination,” Opt. Express 27(4), 5238–5252 (2019).
    [Crossref]
  19. A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).
    [Crossref]
  20. J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 20(8), 8431–8441 (2012).
    [Crossref]
  21. J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
    [Crossref]
  22. J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
    [Crossref]
  23. Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
    [Crossref]
  24. D. Engström, M. Persson, J. Bengtsson, and M. Goksör, “Calibration of spatial light modulators suffering from spatially varying phase response,” Opt. Express 21(13), 16086–16103 (2013).
    [Crossref]
  25. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
    [Crossref]
  26. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
    [Crossref]
  27. J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
    [Crossref]
  28. R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).
  29. H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express 27(17), 24556–24567 (2019).
    [Crossref]
  30. M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39(8), 2129–2137 (2000).
    [Crossref]
  31. J. P. Yang and H. M. P. Chen, “A 3-msec Response-Time Full-Phase-Modulation 1080p LCoS-SLM for Dynamic 3D Holographic Displays,” SID Int. Symp. Digest Tech. Papers 48(1), 1073–1076 (2017).
    [Crossref]
  32. H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
    [Crossref]
  33. S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
    [Crossref]
  34. S. Moser, M. R. Marte, and G. Thalhammer, “Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators,” Opt. Express 27(18), 25046–25063 (2019).
    [Crossref]
  35. Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
    [Crossref]

2019 (11)

Z. He, G. Tan, D. Chanda, and S. T. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
[Crossref]

T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
[Crossref]

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

G. Lazarev, P. J. Chen, J. Strauss, N. Fontaine, and A. Forbes, “Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics,” Opt. Express 27(11), 16206–16249 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

A. Márquez, F. J. Martínez-Guardiola, J. Francés, S. Gallego, I. Pascual, and A. Beléndez, “Combining average molecular tilt and flicker for management of depolarized light in parallel-aligned liquid crystal devices for broadband and wide-angle illumination,” Opt. Express 27(4), 5238–5252 (2019).
[Crossref]

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express 27(17), 24556–24567 (2019).
[Crossref]

S. Moser, M. R. Marte, and G. Thalhammer, “Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators,” Opt. Express 27(18), 25046–25063 (2019).
[Crossref]

2018 (5)

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

A. Linnenberger, “Advanced SLMs for Microscopy,” Proc. SPIE 10502, 1050204 (2018).
[Crossref]

2017 (6)

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

J. P. Yang and H. M. P. Chen, “A 3-msec Response-Time Full-Phase-Modulation 1080p LCoS-SLM for Dynamic 3D Holographic Displays,” SID Int. Symp. Digest Tech. Papers 48(1), 1073–1076 (2017).
[Crossref]

2016 (1)

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

2014 (2)

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref]

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

2013 (1)

2012 (2)

2010 (1)

2007 (2)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

2006 (1)

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

2000 (1)

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39(8), 2129–2137 (2000).
[Crossref]

1986 (1)

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[Crossref]

Ali, T.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Bartlett, T.

T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
[Crossref]

Beléndez, A.

Bengtsson, J.

Bonifer, S.

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

Booth, M. J.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Bouvier, M.

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39(8), 2129–2137 (2000).
[Crossref]

Campos, J.

Chanda, D.

Chang, Y. C.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

Chen, H. M. P.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

J. P. Yang and H. M. P. Chen, “A 3-msec Response-Time Full-Phase-Modulation 1080p LCoS-SLM for Dynamic 3D Holographic Displays,” SID Int. Symp. Digest Tech. Papers 48(1), 1073–1076 (2017).
[Crossref]

Chen, P. J.

Chen, R.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

Choi, J. H.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Chu, D. P.

Crossland, W. A.

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

de Sars, V.

Dobler, M.

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Efron, U.

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[Crossref]

Elston, S. J.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Emiliani, V.

Engel, P.

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

Engström, D.

Fells, J. A. J.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Fontaine, N.

Forbes, A.

Francés, J.

Franklin, D.

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Frumker, E.

Fujikake, H.

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

Fukuchi, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Gallego, S.

García-Márquez, J.

Georgiou, A.

W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Goksör, M.

González-Vega, A.

Gou, F.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Guillon, M.

Häfner, T.

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Hall, J.

T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
[Crossref]

Hara, T.

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

He, Z.

Heberle, J.

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Henderson, C. J.

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Höhne, D.

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

Hong, S.-Y.

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Hsu, C.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

Hsu, R.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

Hsu, Z. N.

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

Huang, Y.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

Hudson, E. L.

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Hwang, C. S.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Hwang, C. Y.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Iemmi, C.

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Inoue, T.

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Ishinabe, T.

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

Isomae, Y.

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

Jarrahi, M.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Kelemen, L.

Kim, G. H.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Kim, H. O.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Kim, Y. H.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Kollin, J. S.

W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Lai, F. W.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

Lazarev, G.

G. Lazarev, P. J. Chen, J. Strauss, N. Fontaine, and A. Forbes, “Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics,” Opt. Express 27(11), 16206–16249 (2019).
[Crossref]

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

Lee, Y. H.

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Leyva, D. G.

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Liao, E.

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

Lin, J. D.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Lin, X.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Linnenberger, A.

A. Linnenberger, “Advanced SLMs for Microscopy,” Proc. SPIE 10502, 1050204 (2018).
[Crossref]

Liu, G.

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Lizana, A.

Lo, R.

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Lobato, L.

López, V.

Luo, Y.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Maimone, W. A.

W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Mao, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Marquez, A.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Márquez, A.

Marte, M. R.

Martínez-Guardiola, F. J.

Matsumotoa, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

McDonald, B.

T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
[Crossref]

McDonald, D. C.

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Mehl, G. H.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Moreno, I.

Morris, S. M.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Moser, S.

Mukozaka, N.

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

Noé, E.

Notni, G.

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

Ormos, P.

Ozcan, A.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Pascual, I.

Peng, F.

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Persson, M.

Pi, J. E.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Rivenson, Y.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Rodange, Y.

Ronzitti, E.

Scharf, T.

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39(8), 2129–2137 (2000).
[Crossref]

Schmidt, M.

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Shibata, Y.

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

Silberberg, Y.

Stover, M.

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Strauss, J.

Strauß, J.

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Tan, G.

Tanaka, H.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Thalhammer, G.

Ting, L.

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

Toyoda, H.

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

Tsai, R.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

Vaquero, F. J.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Veli, M.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Vizsnyiczai, G.

Wang, M.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Wang, X.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Welch, C.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Wilkinson, T. D.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Wu, M. H.

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

Wu, S. T.

Z. He, G. Tan, D. Chanda, and S. T. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
[Crossref]

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[Crossref]

Yang, H.

Yang, J. H.

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

Yang, J. P.

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

J. P. Yang and H. M. P. Chen, “A 3-msec Response-Time Full-Phase-Modulation 1080p LCoS-SLM for Dynamic 3D Holographic Displays,” SID Int. Symp. Digest Tech. Papers 48(1), 1073–1076 (2017).
[Crossref]

Yardimci, N. T.

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

Ye, Y.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Yen, H. T.

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

Yin, K.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

Yip, W. C.

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

Zhan, T.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

Zhao, H.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Zong, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

ACM Trans. Graph. (1)

W. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[Crossref]

Appl. Sci. (2)

Y. Huang, E. Liao, R. Chen, and S. T. Wu, “Liquid-crystal-on-silicon for augmented reality displays,” Appl. Sci. 8(12), 2366 (2018).
[Crossref]

H. M. P. Chen, J. P. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. 8(11), 2323 (2018).
[Crossref]

Crystals (1)

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments,” Crystals 9(6), 292 (2019).
[Crossref]

J. Mater. Chem. (1)

T. D. Wilkinson, C. J. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (1)

Y. Isomae, T. Ishinabe, Y. Shibata, and H. Fujikake, “Alignment control of liquid crystals in a 1.0-µm-pitch spatial light modulator by lattice-shaped dielectric wall structure,” J. Soc. Inf. Disp. 27(4), 251–258 (2019).
[Crossref]

Opt. Eng. (1)

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39(8), 2129–2137 (2000).
[Crossref]

Opt. Express (11)

A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS spatial light modulator,” Opt. Express 20(8), 8431–8441 (2012).
[Crossref]

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
[Crossref]

D. Engström, M. Persson, J. Bengtsson, and M. Goksör, “Calibration of spatial light modulators suffering from spatially varying phase response,” Opt. Express 21(13), 16086–16103 (2013).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref]

Z. He, Y. H. Lee, F. Gou, D. Franklin, D. Chanda, and S. T. Wu, “Polarization-independent phase modulators enabled by two-photon polymerization,” Opt. Express 25(26), 33688–33694 (2017).
[Crossref]

A. Márquez, F. J. Martínez-Guardiola, J. Francés, S. Gallego, I. Pascual, and A. Beléndez, “Combining average molecular tilt and flicker for management of depolarized light in parallel-aligned liquid crystal devices for broadband and wide-angle illumination,” Opt. Express 27(4), 5238–5252 (2019).
[Crossref]

Z. He, G. Tan, D. Chanda, and S. T. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
[Crossref]

G. Lazarev, P. J. Chen, J. Strauss, N. Fontaine, and A. Forbes, “Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics,” Opt. Express 27(11), 16206–16249 (2019).
[Crossref]

H. Yang and D. P. Chu, “Phase flicker optimisation in digital liquid crystal on silicon devices,” Opt. Express 27(17), 24556–24567 (2019).
[Crossref]

S. Moser, M. R. Marte, and G. Thalhammer, “Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators,” Opt. Express 27(18), 25046–25063 (2019).
[Crossref]

Photonics (1)

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. Vaquero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Phys. Procedia (1)

J. Strauß, T. Häfner, M. Dobler, J. Heberle, and M. Schmidt, “Evaluation and calibration of LCoS SLM for direct laser structuring with tailored intensity distributions,” Phys. Procedia 83, 1160–1169 (2016).
[Crossref]

Proc. SPIE (4)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumotoa, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[Crossref]

A. Linnenberger, “Advanced SLMs for Microscopy,” Proc. SPIE 10502, 1050204 (2018).
[Crossref]

G. Lazarev, S. Bonifer, P. Engel, D. Höhne, and G. Notni, “High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor,” Proc. SPIE 10335, 103351B (2017).
[Crossref]

T. Bartlett, B. McDonald, and J. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE 10932, 109320S (2019).
[Crossref]

Sci. Rep. (2)

X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J. D. Lin, C. Welch, G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J. Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector,” Sci. Rep. 9(1), 7016 (2019).
[Crossref]

Y. H. Lee, D. Franklin, F. Gou, G. Liu, F. Peng, D. Chanda, and S. T. Wu, “Two-photon polymerization enabled multi-layer liquid crystal phase modulator,” Sci. Rep. 7(1), 16260 (2017).
[Crossref]

Science (1)

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361(6406), 1004–1008 (2018).
[Crossref]

SID Int. Symp. Digest Tech. Papers (5)

J. P. Yang, H. M. P. Chen, Y. Huang, S. T. Wu, C. Hsu, L. Ting, and R. Hsu, “Sub-KHz 4000-PPI LCoS Phase Modulator for Holographic Displays,” SID Int. Symp. Digest Tech. Papers 49(1), 772–775 (2018).
[Crossref]

J. P. Yang, H. M. P. Chen, Y. Huang, Y. C. Chang, F. W. Lai, S. T. Wu, C. Hsu, R. Tsai, and R. Hsu, “Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator,” SID Int. Symp. Digest Tech. Papers 50(1), 933–936 (2019).
[Crossref]

J. H. Choi, J. H. Yang, J. E. Pi, C. Y. Hwang, Y. H. Kim, G. H. Kim, H. O. Kim, and C. S. Hwang, “The new route for realization of 1-µm-pixel-pitch high-resolution displays,” SID Int. Symp. Digest Tech. Papers 50(1), 319–321 (2019).
[Crossref]

J. P. Yang and H. M. P. Chen, “A 3-msec Response-Time Full-Phase-Modulation 1080p LCoS-SLM for Dynamic 3D Holographic Displays,” SID Int. Symp. Digest Tech. Papers 48(1), 1073–1076 (2017).
[Crossref]

H. Toyoda, T. Inoue, N. Mukozaka, T. Hara, and M. H. Wu, “Advances in Application of Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM),” SID Int. Symp. Digest Tech. Papers 45(1), 559–562 (2014).
[Crossref]

Other (1)

R. Lo, E. L. Hudson, M. Stover, S.-Y. Hong, and D. C. McDonald, “System and method for pulse - width modulating a phase - only spatial light modulator,” U.S. patent, 9918053 (March13, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The pixel-level phase modulation with various spatial frequencies (period = 1 + 1, 2 + 2, 8 + 8) and grating directions (H and V grating) in 4,005 PPI 2K1K LCOS-SLMs are obtained: (a) 2KSRK with d/p∼0.59, (b) LETO with d/p∼0.38, and (c) PCU-3-02-TKS with d/p = 0.28.
Fig. 2.
Fig. 2. The temporal fluctuation of phase modulation with different 2K1K LCOS-SLMs are obtained: (a) 2KSRK with Tclks = 2.77 ms, (b) LETO with Tclks = 2.38 ms, and (c) PCU-3-02-TKS with Tclks = 1.02 ms.
Fig. 3.
Fig. 3. Zero-order light intensity of TKS is obtained: (a) At “GL-0” frame, (b) At “CGH” phase pattern of “NCTU-LOGO”, and (c). The target amplitude pattern of “NCTU-LOGO”.
Fig. 4.
Fig. 4. Measured phase rise (low to high voltage frame) and decay (high to low voltage frame) times of PCU-3-02 series LCOS panels at λ = 633 nm are obtained for (a) TKS at high driving voltage under 35 °C, (b) HS under 35 °C, and (c) HS under 45 °C.
Fig. 5.
Fig. 5. Measured temporal phase modulation of PCU-3-02-LTF LCOS panel with 35 °C at λ = 633 nm is obtained for (a). LC switching speed (toggle) and (b) phase flicker (holding).
Fig. 6.
Fig. 6. The pixel-level phase modulation with various spatial frequencies (period = 1 + 1, 2 + 2, 8 + 8) and grating directions (H- and V- grating) in 6907 PPI (pitch = 3.74 µm) 4K2K LCOS-SLMs are obtained: (a) 4KSRK with d/p∼1.02 and (b) PCU-3-02-HPPI with d/p = 0.47.
Fig. 7.
Fig. 7. The temporal fluctuation of phase modulation with different 4K2K LCOS-SLMs are obtained: (a) 4KSRK with Tclks = 4.16 ms and (b) PCU-3-02-HPPI with Tclks = 3.40 ms.

Tables (3)

Tables Icon

Table 1. LCOS cell specification shows IC-backplane, LC properties at 25 °C under 633 nm, cell condition, and min digital ΔV at Top of PCU-3-02 series and commercial SLMs.

Tables Icon

Table 2. Digital driving shows different LCOS controllers, configuration files, and digital addressing schemes of new PCU-3-02 series and commercial SLMs.

Tables Icon

Table 3. The summary shows digital voltage, linearity, spatially anamorphic and time-fluctuation performance of PCU-3-02-TKS and commercial version (2KSRK, LETO).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Input Frame Rate = [ Tclks ] × Repeat
Tclks = ( mclksperrow mclkfreq × swp ) × twgt .
I I 0 = cos 2 χ sin 2 ϕ sin 2 ( ϕ χ ) sin 2 ( δ 2 ) ,
APAE % : GL = 0 GL = 255 ( | δ m ( LUT(GL) ) δ i ( GL ) | δ max δ min 256
RMS : GL = 0 GL = 255 ( δ m ( LUT(GL) ) δ i ( GL ) ) 2 256 ,
mSTD(x, y) = GL = 0 GL = 255 mxy = 1 mxy = max ( δ mxy ( LU T global ( GL ) , x , y ) δ mxy ¯ ( LU T global ( GL ) , x , y ) ) 2 Total mxy 256 ,
I 0 -order (GL) = 1 2 [ 1 + cos ( δ (GL) ) ] ,
FoM = K 11 ( Δ n) 2 γ 1 ( Δ ε ) ,
η ± 1 -order = ( η fill factor × η reflection × η modulation ) ,
I 0 -order ( % ) = ( η fill factor × η reflection × η BS ) × I 0 order ( CGH ) ( η fill factor × η reflection × η BS ) × I 0 order ( GL 0 ) ,

Metrics